832 research outputs found

    Serum is not necessary for prior pharmacological activation of AMPK to increase insulin sensitivity of mouse skeletal muscle

    Get PDF
    Exercise, contraction, and pharmacological activation of AMP-activated protein kinase (AMPK) by 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) have all been shown to increase muscle insulin sensitivity for glucose uptake. Intriguingly, improvements in insulin sensitivity following contraction of isolated rat and mouse skeletal muscle and prior AICAR stimulation of isolated rat skeletal muscle seem to depend on an unknown factor present in serum. One study recently questioned this requirement of a serum factor by showing serum-independency with muscle from old rats. Whether a serum factor is necessary for prior AICAR stimulation to increase insulin sensitivity of mouse skeletal muscle is not known. Therefore, we investigated the necessity of serum for this effect of AICAR in mouse skeletal muscle. We found that the ability of prior AICAR stimulation to improve insulin sensitivity of mouse skeletal muscle did not depend on the presence of serum during AICAR stimulation. Although prior AICAR stimulation did not enhance proximal insulin signaling, insulin-stimulated phosphorylation of Tre-2/BUB2/CDC16- domain family member 4 (TBC1D4) Ser711 was greater in prior AICAR-stimulated muscle compared to all other groups. These results imply that the presence of a serum factor is not necessary for prior AMPK activation by AICAR to enhance insulin sensitivity of mouse skeletal muscle

    Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle

    Get PDF
    Objective: A single bout of exercise followed by intake of carbohydrates leads to glycogen supercompensation in prior exercised muscle. Our objective was to illuminate molecular mechanisms underlying this phenomenon in skeletal muscle of man. Methods: We studied the temporal regulation of glycogen supercompensation in human skeletal muscle during a 5 day recovery period following a single bout of exercise. Nine healthy men depleted (day 1), normalized (day 2) and supercompensated (day 5) muscle glycogen in one leg while the contralateral leg served as a resting control. Euglycemic hyperinsulinemic clamps in combination with leg balance technique allowed for investigating insulin-stimulated leg glucose uptake under these 3 experimental conditions. Cellular signaling in muscle biopsies was investigated by global proteomic analyses and immunoblotting. We strengthened the validity of proposed molecular effectors by follow-up studies in muscle of transgenic mice. Results: Sustained activation of glycogen synthase (GS) and AMPK in combination with elevated expression of proteins determining glucose uptake capacity were evident in the prior exercised muscle. We hypothesize that these alterations offset the otherwise tight feedback inhibition of glycogen synthesis and glucose uptake by glycogen. In line with key roles of AMPK and GS seen in the human experiments we observed abrogated ability for glycogen supercompensation in muscle with inducible AMPK deletion and in muscle carrying a G6P-insensitive form of GS in muscle. Conclusion: Our study demonstrates that both AMPK and GS are key regulators of glycogen supercompensation following a single bout of glycogen-depleting exercise in skeletal muscle of both man and mouse. Keywords: AMP-activated protein kinase (AMPK), TBC1 domain family member 4 (TBC1D4), Glycogen synthase (GS), Glucose uptake, Exercise, Insulin actio

    Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle

    Get PDF
    AbstractTransfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA delivery across the muscle by increasing the number of plasmid DNA injections further enhanced transfection efficiency whereas increasing plasmid dose from 0.2 to 1.6µg/g b.w. or vehicle volume had no effect. The optimized protocol resulted in ~80% (CI95%: 79–84%) transfected muscle fibers with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle

    Impairments in Site-Specific AS160 Phosphorylation and Effects of Exercise Training

    Get PDF
    The purpose of this study was to determine if site-specific phosphorylation at the level of Akt substrate of 160 kDa (AS160) is altered in skeletal muscle from sedentary humans across a wide range of the adult life span (18–84 years of age) and if endurance- and/or strength-oriented exercise training could rescue decrements in insulin action and skeletal muscle AS160 phosphorylation. A euglycemic-hyperinsulinemic clamp and skeletal muscle biopsies were performed in 73 individuals encompassing a wide age range (18–84 years of age), and insulin-stimulated AS160 phosphorylation was determined. Decrements in whole-body insulin action were associated with impairments in insulin-induced phosphorylation of skeletal muscle AS160 on sites Ser-588, Thr-642, Ser-666, and phospho-Akt substrate, but not Ser-318 or Ser-751. Twelve weeks of endurance- or strength-oriented exercise training increased whole-body insulin action and reversed impairments in AS160 phosphorylation evident in insulin-resistant aged individuals. These findings suggest that a dampening of insulin-induced phosphorylation of AS160 on specific sites in skeletal muscle contributes to the insulin resistance evident in a sedentary aging population and that exercise training is an effective intervention for treating these impairments

    Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates

    Get PDF
    Objective: Fibroblast-growth factor 21 (FGF21) is thought to be important in metabolic regulation. Recently, low protein diets have been shown to increase circulating FGF21 levels. However, when energy contribution from dietary protein is lowered, other macronutrients, such as carbohydrates, must be increased to meet eucaloric balance. This raises the possibility that intake of a diet rich in carbohydrates may induce an increase in plasma FGF21 levels per se. Here we studied the role of dietary carbohydrates on the levels of circulating FGF21 and concomitant physiologic effects by feeding healthy men a carbohydrate rich diet without reducing protein intake. Methods: A diet enriched in carbohydrates (80 E% carbohydrate; CHO) and a eucaloric control diet (CON) were provided to nine healthy men for three days. The energy intake during the CHO diet was increased (+75% energy) to ensure similar dietary protein intake in CHO and CON. To control for the effect of caloric surplus, we similarly overfed (+75% energy) the same subjects for three days with a fat-rich diet (78 E% fat; FAT), consisting of primarily unsaturated fatty acids. The three diets were provided in random order. Results: After CHO, plasma FGF21 concentration increased 8-fold compared to CON (329 ± 99 vs. 39 ± 9 pg ml−1, p < 0.05). In contrast, after FAT only a non-significant tendency (p = 0.073) to an increase in plasma FGF21 concentration was found. The increase in FGF21 concentration after CHO correlated closely (r = 0.88, p < 0.01) with increased leg glucose uptake (62%, p < 0.05) and increased hepatic glucose production (17%, p < 0.01), indicating increased glucose turnover. Plasma fatty acid (FA) concentration was decreased by 68% (p < 0.01), supported by reduced subcutaneous adipose tissue HSL Ser660 phosphorylation (p < 0.01) and perilipin 1 protein content (p < 0.01), pointing to a suppression of adipose tissue lipolysis. Concomitantly, a 146% increase in the plasma marker of hepatic de novo lipogenesis C16:1 n−7 FA (p < 0.01) was observed together with 101% increased plasma TG concentration (p < 0.001) in association with CHO intake and increased plasma FGF21 concentration. Conclusion: Excess dietary carbohydrate, but not fat, led to markedly increased FGF21 secretion in humans, notably without protein restriction, and affected glucose and lipid homeostais. Keywords: FGF21, Diet, Carbohydrates, Lipolysis, Live
    corecore