506 research outputs found

    Temperature dependent transport characteristics of graphene/n-Si diodes

    Get PDF
    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<<1010^{-10} A) and rectification of more than 10610^6. We extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83 eV for the CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and G\"{u}ttler.Comment: 5 pages, 5 figure

    Język (polski) w feministycznej perspektywie rodzajowej

    Get PDF
    Autor swoja pracę poświęcił rozważaniom nad językiem i mechanizmem przemocy w nim obecnym. Zwraca uwagę, iż za pomocą języka dochodzi do dyskryminacji i wykluczenia obecnych. Dzieje się tak również w sposób nieuświadomiony i niestety takie działania mają również miejsce w tzw. „ukrytym programie nauczania” realizowanym na różnym poziomie nauczania. W rozdziale znalazły się także propozycje przeprowadzenia zajęć szkolnych (na poziomie podstawowym i gimnazjalnym oraz na poziomie ponadgimnazjalnym), które mają za zadanie uświadomić uczennicom i uczniom funkcjonowanie mechanizmów dyskryminacyjnych w ramach języka oraz nauczyć ich krytycznej refleksji nad tą kwestią.Udostępnienie publikacji Wydawnictwa Uniwersytetu Łódzkiego finansowane w ramach projektu „Doskonałość naukowa kluczem do doskonałości kształcenia”. Projekt realizowany jest ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Wiedza Edukacja Rozwój; nr umowy: POWER.03.05.00-00-Z092/17-00

    Large yield production of high mobility freely suspended graphene electronic devices on a PMGI based organic polymer

    Get PDF
    The recent observation of fractional quantum Hall effect in high mobility suspended graphene devices introduced a new direction in graphene physics, the field of electron-electron interaction dynamics. However, the technique used currently for the fabrication of such high mobility devices has several drawbacks. The most important is that the contact materials available for electronic devices are limited to only a few metals (Au, Pd, Pt, Cr and Nb) since only those are not attacked by the reactive acid (BHF) etching fabrication step. Here we show a new technique which leads to mechanically stable suspended high mobility graphene devices which is compatible with almost any type of contact material. The graphene devices prepared on a polydimethylglutarimide based organic resist show mobilities as high as 600.000 cm^2/Vs at an electron carrier density n = 5.0 10^9 cm^-2 at 77K. This technique paves the way towards complex suspended graphene based spintronic, superconducting and other types of devices.Comment: 14 pages, 4 figure

    Discovery of Gamma-ray Emission from M31 via FERMI-LAT

    Full text link
    2 years worth of archival FERMI-LAT data was used to search for the gamma-ray emission from the Andromeda galaxy. The data show no noticeable elliptical image. Subsequent on-off source aperture photometry analysis using a CO image template show a 7 sigma excess in the number of on-source apertures in comparison to the off-source apertures, yielding a flux of (4.95+/-0.71)x10-8 photons cm-2 s-1 for E>100 MeV.Comment: 7 pages, 5 figure

    The body constitution of patients and intubation scales as predictors of difficult intubation considered in relation to the experience of the intubator

    Get PDF
    The aims of the study were to identify factors that may result in difficulties in intubation, and to compare the results obtained when an experienced and when a less experienced anaesthesiologist was involved. The 96 patients included in the study were evaluated for difficult intubation according to the following scales: Mallampati, upper lip bite test (ULBT) and Patil. The mobility of the cervical segments of the vertebral column, the distance between the jugular notch of the sternum and the chin and the anatomical constitution of the body were other factors that were taken into consideration. Statistical analysis was performed in order to identify factors that may result in difficulties in intubation for an experienced and for a less experienced anaesthesiologist

    A road to hydrogenating graphene by a reactive ion etching plasma

    Get PDF
    We report the hydrogenation of single and bilayer graphene by an argon-hydrogen plasma produced in a reactive ion etching (RIE) system. Electronic transport measurements in combination with Raman spectroscopy are used to link the electric mean free path to the optically extracted defect concentration. We emphasize the role of the self-bias of the graphene in suppressing the erosion of the akes during plasma processing. We show that under the chosen plasma conditions the process does not introduce considerable damage to the graphene sheet and that hydrogenation occurs primarily due to the hydrogen ions from the plasma and not due to fragmentation of water adsorbates on the graphene surface by highly accelerated plasma electrons. For this reason the hydrogenation level can be precisely controlled. The hydrogenation process presented here can be easily implemented in any RIE plasma system.Comment: 7 page

    Electronic Spin Transport in Dual-Gated Bilayer Graphene

    Full text link
    The elimination of extrinsic sources of spin relaxation is key in realizing the exceptional intrinsic spin transport performance of graphene. Towards this, we study charge and spin transport in bilayer graphene-based spin valve devices fabricated in a new device architecture which allows us to make a comparative study by separately investigating the roles of substrate and polymer residues on spin relaxation. First, the comparison between spin valves fabricated on SiO2 and BN substrates suggests that substrate-related charged impurities, phonons and roughness do not limit the spin transport in current devices. Next, the observation of a 5-fold enhancement in spin relaxation time in the encapsulated device highlights the significance of polymer residues on spin relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin relaxation time decreases monotonically as carrier concentration increases, and n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The sudden increase in the spin relaxation time with no corresponding signature in the charge transport suggests the presence of a magnetic resonance close to the charge neutrality point. We also demonstrate, for the first time, spin transport across bipolar p-n junctions in our dual-gated device architecture that fully integrates a sequence of encapsulated regions in its design. At low temperatures, strong suppression of the spin signal was observed while a transport gap was induced, which is interpreted as a novel manifestation of impedance mismatch within the spin channel

    Probing the electronic transport on the reconstructed Au/Ge(001) surface

    Get PDF
    By using scanning tunnelling potentiometry we characterized the lateral variation of the electrochemical potential μec\mu _{ec} on the gold-induced Ge(001)-c(8 × 2)-Au surface reconstruction while a lateral current flows through the sample. On the reconstruction and across domain boundaries we find that μec\mu _{ec} shows a constant gradient as a function of the position between the contacts. In addition, nanoscale Au clusters on the surface do not show an electronic coupling to the gold-induced surface reconstruction. In combination with high resolution scanning electron microscopy and transmission electron microscopy, we conclude that an additional transport channel buried about 2 nm underneath the surface represents a major transport channel for electrons
    corecore