8 research outputs found
Geometric frustration in the myosin superlattice of vertebrate muscle
Geometric frustration results from an incompatibility between minimum energy arrangements and the geometry of a system, and gives rise to interesting and novel phenomena. Here, we report geometric frustration in a native biological macromolecular system---vertebrate muscle. We analyse the disorder in the myosin filament rotations in the myofibrils of vertebrate striated (skeletal and cardiac) muscle, as seen in thin-section electron micrographs, and show that the distribution of rotations corresponds to an archetypical geometrically frustrated system---the triangular Ising antiferromagnet. Spatial correlations are evident out to at least six lattice spacings. The results demonstrate that geometric frustration can drive the development of structure in complex biological systems, and may have implications for the nature of the actin--myosin interactions involved in muscle contraction. Identification of the distribution of myosin filament rotations with an Ising model allows the extensive results on the latter to be applied to this system. It shows how local interactions (between adjacent myosin filaments) can determine long-range order and, conversely, how observations of long-range order (such as patterns seen in electron micrographs) can be used to estimate the energetics of these local interactions. Furthermore, since diffraction by a disordered system is a function of the second-order statistics, the derived correlations allow more accurate diffraction calculations, which can aid in interpretation of X-ray diffraction data from muscle specimens for structural analysis
Intrinsically Disordered and Pliable Starmaker-Like Protein from Medaka (Oryzias latipes) Controls the Formation of Calcium Carbonate Crystals
Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed
Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background grapheme
© 2018 The Author(s). Here we present a new approach to diffraction imaging of amyloid fibrils, combining a free-standing graphene support and single nanofocused X-ray pulses of femtosecond duration from an X-ray free-electron laser. Due to the very low background scattering from the graphene support and mutual alignment of filaments, diffraction from tobacco mosaic virus (TMV) filaments and amyloid protofibrils is obtained to 2.7 Å and 2.4 Å resolution in single diffraction patterns, respectively. Some TMV diffraction patterns exhibit asymmetry that indicates the presence of a limited number of axial rotations in the XFEL focus. Signal-to-noise levels from individual diffraction patterns are enhanced using computational alignment and merging, giving patterns that are superior to those obtainable from synchrotron radiation sources. We anticipate that our approach will be a starting point for further investigations into unsolved structures of filaments and other weakly scattering objects
1 Б1.Б.1 История
Serial diffraction data collected at the Linac Coherent Light Source from crystalline amyloid fibrils delivered in a liquid jet show that the fibrils are well oriented in the jet. At low fibril concentrations, diffraction patterns are recorded from single fibrils; these patterns are weak and contain only a few reflections. Methods are developed for determining the orientation of patterns in reciprocal space and merging them in three dimensions. This allows the individual structure amplitudes to be calculated, thus overcoming the limitations of orientation and cylindrical averaging in conventional fibre diffraction analysis. The advantages of this technique should allow structural studies of fibrous systems in biology that are inaccessible using existing techniques