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Geometric frustration results from an incompatibility between minimum
energy arrangements and the geometry of a system, and gives rise to interest-
ing and novel phenomena. Here, we report geometric frustration in a native
biological macromolecular system—vertebrate muscle. We analyse the dis-
order in the myosin filament rotations in the myofibrils of vertebrate
striated (skeletal and cardiac) muscle, as seen in thin-section electron micro-
graphs, and show that the distribution of rotations corresponds to an
archetypical geometrically frustrated system—the triangular Ising antiferro-
magnet. Spatial correlations are evident out to at least six lattice spacings.
The results demonstrate that geometric frustration can drive the development
of structure in complex biological systems, and may have implications for the
nature of the actin–myosin interactions involved in muscle contraction. Identi-
fication of the distribution of myosin filament rotations with an Ising model
allows the extensive results on the latter to be applied to this system. It
shows how local interactions (between adjacent myosin filaments) can deter-
mine long-range order and, conversely, how observations of long-range order
(such as patterns seen in electron micrographs) can be used to estimate the
energetics of these local interactions. Furthermore, since diffraction by a disor-
dered system is a function of the second-order statistics, the derived
correlations allow more accurate diffraction calculations, which can aid in
interpretation of X-ray diffraction data from muscle specimens for structural
analysis.
1. Introduction
Geometric frustration results from an incompatibility of neighbour minimum
energy arrangements with the topology of the bulk system [1–6]. It leads to
highly degenerate ground states and novel phases of matter, and is recognized
as an important organizing principle in systems including spin glasses, supercon-
ductors, protein crystals, quantum dynamics, colloids, plasmonics, protein
folding and neural computation [7–15]. The presence of geometric frustration
in experimental systems is frequently inferred indirectly by methods such as
X-ray scattering, NMR, heat capacity and susceptibility [16]. It has also been
observed directly using fabricated arrays of superconducting rings [7], nanoscale
magnets [8,17–21] and confined colloidal monolayers [22]. Geometric frustration
has most frequently been observed in either natural or fabricated physical sys-
tems. In this paper, we report the presence of geometric frustration in a native
biological macromolecular system—the myosin lattice of vertebrate muscle. We
show that the observed disorder in the myosin filament array is well-modelled
by an archetypical frustrated system, the triangular Ising antiferromagnet
(TIA). Mapping this system to an Ising model allows the extensive results on
this model to be used to explore relationships between local interactions and
long-range order, the energetics of intermolecular interactions and possible
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Figure 1. Schematic diagram of a muscle sarcomere (the repeating unit of a
myofibril). (a) The overlapping myosin and actin filaments, the cross-linking
of the myosin filaments at the M-band and the location of the bare region
(dashed line) between the M-band and where the myosin head array starts
on the myosin filaments. (b–d ) Cross-sections through various parts of the
sarcomere in (a), showing (b) the M-band where M-bridges cross-link the
myosin filaments, (c) the bare region where the myosin filaments appear tri-
angular (a superlattice cell is shown by the dashed lines) and (d ) the
crossbridge, or overlap, region where the myosin heads project from the
myosin filament backbone. (Figure redrawn from [28,33].)
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implications for biological function, and derivation of other
physical quantities such as diffraction properties.

The molecular basis of muscle contraction is an ongoing
area of research [23–27]. At the molecular level, the key com-
ponents that mediate contraction are the proteins myosin and
actin. The myosin and actin molecules assemble together to
form myosin and actin filaments, which are often referred to
as the thick filaments and thin filaments, respectively. Muscle
myosin consists of a two-chain α-helical rod with a globular
‘head’ at one end of each chain. The two globular heads are
in close proximity at one end of the resulting dimer, and
when assembled in the myosin filament, the myosin heads dec-
orate the filament surface. The myosin and actin filaments pack
together side-by-side in an interdigitated array, and the arrays
are assembled end-to-end to form long assemblies called myo-
fibrils [28,29]. The end-to-end assembly results in a periodic
structure, and the repeating unit is referred to as the sarcomere.
The sarcomere is the basic contractile unit of vertebrate striated
(skeletal and cardiac) muscle. In vertebrate muscle, myofibril
cross-sections vary in size and shape, measure 2−5 μm across,
and in humans can be up to approximately 0.1 m long. Several
hundred myofibrils are bundled together to form a muscle
fibre, and vertebrate muscle is composed of approximately
parallel bundles of thousands of muscle fibres.

Muscular force is generated by a series of biochemical reac-
tions that result in a force and sliding movement between the
actin and myosin filaments [28,30]. This results from cycles
in which myosin heads that project from the myosin filament
surface attach to actin, undergo a structural transition that
produces the relative force and movement, and are sub-
sequently released from actin [28–32]. This attachment/
detachment cycle is repeated, providing muscular force
generation and contraction.

The geometrical relationship between the myosin and
actin filaments in the sarcomere is shown in figure 1. The
interactions between the myosin heads and the actin filaments
occur in the so-called overlap or crossbridge region where the
two filaments are side-by-side, as shown in figure 1. Three
other relevant regions of the sarcomere are the bare region,
where there are myosin filaments but no myosin crossbridges,
the M-band region, where the myosin filaments are cross-
linked and anchored together, and the Z-line boundary
between two contiguous sarcomeres, also shown in figure 1.

In cross-section, the myosin filaments are arranged on a tri-
angular lattice (figure 1). The arrangement of the myosin
filaments on this lattice is not perfectly regular however, each
filament adopting one of two rotations about its long axis,
with the two rotations being distributed on the lattice in a dis-
ordered, semi-random manner. This disorder is referred to as
the myosin superlattice [33]. It is the nature of this myosin
superlattice disorder with which we are concerned.

The superlattice disorder in muscle is described in §2.
In §3, we describe our measurement of the filament rotation
disorder and its analysis in terms of the TIA. A tentative
interpretation in terms of the energetics of myosin filament
interactions and concluding remarks are given in §4.
2. The myosin superlattice
The myosin filaments in vertebrate muscle are arranged in the
myofibrils on a triangular array with a spacing of approxi-
mately 47 nm [31,34], with the actin filaments interdigitated
within the myosin array at the centre of each triangle
(figure 1). The myosin filaments themselves exhibit internal
threefold rotational symmetry and exhibit an approximately
triangular cross-section in the bare region. This is most clearly
seen in electron micrographs of thin transverse sections
through the bare region, where there is less clutter from the
other molecular components. An example micrograph through
the bare region of one myofibril of frog sartorius muscle is
shown in figure 2a. The closed disordered contour seen in
the micrograph (and marked by the blue curve) is the bound-
ary of the myofibril. Within the myofibril, the triangular lattice
is clearly evident and the dark, approximately triangular,
regions are the cross-sections of the myosin filaments. Close
inspection of such micrographs shows that in the striated
muscles of higher vertebrates, the myosin filaments adopt
one of two rotations about their long axis, which are 60° (or
180°, as a result of their threefold symmetry) apart. The two
rotations are distributed on the lattice in a semi-systematic
manner [33]. This is the myosin superlattice disorder.

Although the superlattice disorder is frequently seen in
vertebrate muscle, there are exceptions where all the
myosin filaments have the same rotation, which is referred
to as the simple lattice. The simple lattice is seen in bony
fish muscles [35], slow muscles of sharks (cartilaginous
fish) [36] and the rat soleus muscle [37]. Furthermore, in
other cases, particularly in the activated state, the myosin lat-
tice may be subject to lattice disorder or disorder in the
population of the cross-bridges, possibly masking the pres-
ence of either a simple or superlattice [38–40].

The spatial arrangement of the myosin filament rotations
in vertebrate muscle has been studied by Luther & Squire
[33]. By manual inspection of the micrographs, they deter-
mined the rotation of each filament and analysed the
neighbourhood relationships of the rotations. They found
that the filament rotations tend to follow two rules, which
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Figure 2. (a) Electron micrograph of a thin section through the bare region
of one myofibril of frog sartorius muscle. The blue line shows the boundary of
the myofibril within which the filament rotations were determined. The scale
bar is 200 nm. (b) Myosin filament rotations derived from (a). The red and
blue circles denote the two rotations and the small black dots denote fila-
ments with unknown orientations. The superlattice structure is shown by
the rhombi whose vertices are second nearest-neighbour filaments with
the same rotation.

(a) (b) (c)

Figure 3. The no-three-alike rules, (a) Rule 1 and (b) Rule 2. (c) The rhom-
bahedral unit cell of the superlattice, as described in the text.
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they referred to as the no-three-alike rules. The first rule (Rule
1) is that the three mutually adjacent filaments at the corners of
an elementary triangle in the lattice usually do not all have the
same rotation (figure 3a). The second rule (Rule 2) is that the
three adjacent filaments along a row in the lattice usually do
not all have the same rotation (figure 3b). Using simple lattice
constructions based on these two rules, they showed that they
generate lattices in which the filament rotations at the corners
of a rhombus of side length�81 ≃ 47

ffiffiffi

3
p

nm, whose edges join
second-nearest-neighbours in the lattice, tend to be the same
(figure 3c). The rhombohedral unit cell, which contains three
myosin filaments, generates a triangular lattice, referred to as
the superlattice, of spacing approximately 81 nm.

We have previously reported an attempt to derive a more
quantitative model of the myosin lattice disorder than the
empirical no-three-alike rules, by analysing the filament
rotational disorder in the same micrograph as that of
Luther & Squire [33] in terms of a model based on the TIA
[41,42]. Although suggestive, limited results were obtained
for data from only a few micrographs from a single species.
Comparison with the TIA used Monte Carlo simulation and
a simplified model of the TIA correlation structure. Here, we
present an extended and detailed analysis using a dataset com-
prising micrographs of 15 myofibrils from 4 vertebrate species,
and using accurate analytical expressions for the TIA spatial
correlation function. This has allowed a more detailed com-
parison with the sublattice structure of the TIA second-order
statistics and more definitive conclusions. The results provide
strong evidence that the TIA is a universal model for the
superlattice disorder in vertebrate striated muscle.

There is good evidence that the superlattice structure seen
in the bare region extends into the overlap and M-band
regions of the sarcomere. Electron microscopy shows pres-
ence of the superlattice in different parts of the A-band,
which include the M-band, the bare region and the filament
tip region [35], and X-ray fibre diffraction patterns of whole
muscle fibres show reflections with spacings based on the
approximately 81 nm lattice [31]. The superlattice structure
is therefore expected to be related to the nature of the
myosin head–actin interactions in the overlap region. It has
been proposed that the superlattice structure leads to a
more efficient sharing of actin-binding sites by myosin
heads than occurs in simple lattice muscles [33,36]. The
spatial arrangement of the myosin filament rotations in
relation to the neighbouring filaments may be related to
stereospecific binding of myosin heads to actin and the influ-
ence of the actin target areas [43]. The superlattice disorder is
therefore of intrinsic interest in terms of the development of
the sarcomere and muscle function.

Analysis of X-ray diffraction patterns from muscle speci-
mens has been an important technique for studying the
molecular structures of muscle and muscle components
[28,32,34,40,44]. Such analysis depends on accurate calculation
of the diffraction from model structures for comparison with
the observed diffraction. However, the observed diffraction
from a disordered system is a function of the nature of the dis-
order, and in particular of the second-order statistics [45–47],
so that calculation of diffraction from model structures must
also incorporate the effects of the disorder. An approximate
model of the superlattice disorder has been used to partially
account for its effects on diffraction calculations [48], but this
model does not capture all the subtleties of the TIA disorder.
The full second-order statistics (correlations) provided by the
TIA model will allow the development of methods to accu-
rately account for the disorder in diffraction calculations.
Some work in this direction for a 2D lattice has been reported
[49], but this will need to be extended to a full 3D calculation
with molecular models and cylindrical averaging for appli-
cation to muscle diffraction. While a significant undertaking,
the results presented here provide the basis for making such
a calculation.
3. Analysis of the myosin lattice disorder
3.1. Myosin filament orientations
We characterize the nature of the myosin lattice disorder by
measuring the filament rotations and analysing their
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Figure 4. Correlation coefficient versus separation d calculated from the frog
sartorious muscle 1 myofibril ( filled circles) with error bars at the 95% con-
fidence interval shown. The calculated TIA correlation function at T = 0.53 is
shown by the full curves, with the three colours representing sites on the
three sublattices: sublattice 0 (black), sublattice 1 (blue), sublattice 2 (red).
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Figure 5. (a) Frustration on an elementary triangular domain. Up (u) and
down (d) adjacent spins are preferred. It is not possible to optimize all inter-
actions, leading to geometric frustration. (b) Sublattice structure of the TIA
with the sites of the three sublattices labelled 0, 1 and 2 [51]. The
origin, on sublattice 0, is marked by the filled circle. A precise definition
of the sublattices is given in Appendix A.
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second-order statistics. A dataset consisting of electron micro-
graphs of 15 myofibrils was used for this purpose. Specimen
preparation and electron microscopy were as described by
Luther & Squire [33] and summarized in the electronic sup-
plementary material. Data were obtained from 9 myofibrils
from frog sartorius muscle, 3 from shark white myotomal
muscle, one from turtle leg muscle and two from polypterus
white myotomal muscle. These examples give a broad rep-
resentation of the vertebrate family. The micrograph shown
in figure 2a is one of the frog sartorius muscle examples,
which we use to illustrate the analysis. The other micrographs
(see electronic supplementary material) were treated in an
analogous fashion.

Measurement and classification of the fibril rotations in the
micrographs were achieved using an automated image analy-
sis procedure designed for this purpose [50]. Using this
method, the rotation of each filament in a myofibril cross-sec-
tion is determined and classified into one of the two rotations,
or classified as indeterminate if its rotation cannot be reliably
determined. The result of this analysis for the micrograph
shown in figure 2a is shown in figure 2b. Filament classifi-
cations for all micrographs are included in the electronic
supplementary material. The myofibril in figure 2a contains
653 filaments. The rotations of 552 filaments were determined
unambiguously, and those of the remaining 101 filaments were
indeterminate. The derived filament rotations and superlattice
cells are shown in figure 2b.

The second-order statistics of the filament rotations for
each myofibril were determined by calculating the spatial
correlation ρ(d), where

rðdÞ ¼ hsa, saþdia, ð3:1Þ
sa = ±1 for the two different rotations at the site with vector
position a (in units of the lattice spacing), d is the vector sep-
aration, of length d, between the two sites, and 〈 · 〉a denotes
ensemble averaging over positions a in the myofibril.

The correlations, versus the distance d between the lattice
sites, for the filament rotations in figure 2 are shown by the
filled circles in figure 4. Error bars at the 95% confidence
interval (2 s.e.) are also shown. The reason for plotting the
correlations versus the distance d, rather than the vector
separation d, and the significance of the three colours in the
plot, are described in the next subsection. Significant, i.e.
non-zero, correlations are seen out to six lattice spacings.
Close inspection of figure 4 shows a pattern in which the
correlations alternate between positive and negative values,
and decay, with increasing distance d. This non-zero and
structured correlation function points to a specific, i.e. non-
random, distribution of filament rotations. Similar
correlations were obtained for the other 14 myofibrils and
are shown in the electronic supplementary material.

Rule 1 identified by Luther & Squire [33] and described
above provides a clue to the basis of the distribution of
filament rotations. The observation that filaments on an
elementary triangle avoid all having the same rotation indi-
cates that nearest-neighbour pairs of filaments prefer to
adopt different, rather than the same, rotations. This indicates
that the interaction energy between adjacent filaments of
different rotations is lower than that between filaments of
the same rotation. This corresponds precisely to the nearest-
neighbour coupling for the classical TIA, as is described in
the next subsection.

3.2. TIA correlations
We consider the classical TIA with only nearest-neighbour
interactions, which is a two-state spin system on a triangular
lattice, for which the interaction energy for opposite adjacent
spins is lower than that for identical adjacent spins [1]. The
energy between unlike adjacent spins is often denoted −J
and that between like spins +J, with J > 0. The energy differ-
ence is then 2J, and to emphasize this, we denote it here
by Δe, i.e. Δe = 2J. In our case then, Δe is the difference in
the interaction energy between pairs of adjacent myosin
filaments with like and unlike filament rotations.

The TIA is a well-studied, archetypal, geometrically fru-
strated system [1]. It is frustrated because it is impossible to
minimize the energy of all three interactions on an elemen-
tary triangle, and if two spins have opposite orientations
then the energy is independent of the orientation of the
third spin (figure 5a). The nature of the distribution of the
spins depends on the temperature of the system. We denote
the actual, or environmental, temperature of the system by
Te. As a result of frustration, at Te = 0 the system will adopt
one of a large number of ground states. For Te > 0, higher
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energy states become more probable and the system becomes
more random. For Te→∞, the system becomes completely
random. It is convenient, and common, to normalize the
temperature against J and against Boltzmann’s constant k,
and to define a standard, or rescaled, temperature, which
we denote T, by [51]

T ¼ kTe

J
¼ 2kTe

De
: ð3:2Þ

We use this rescaled temperature here.
Although Rule 1 suggests that the myosin superlattice

disorder may be a manifestation of the TIA, verification
requires a quantitative comparison of the spatial statistics of
the observed myosin filament rotations with those of the TIA.

The second-order statistics of the TIA have been studied
by a number of authors [51–53]. The spatial correlation func-
tion is complicated and not amenable to a simple analytical
description. Although the correlation function ρ(d) depends
on the vector separation d between two lattice sites, i.e.
equation (3.1), considerable simplification of its behaviour is
achieved by partitioning the lattice into three sublattices,
and expressing the correlation on each sublattice as a function
of only the distance d between an origin and the sites on each
sublattice. The sublattices are labelled 0, 1 and 2, and the cor-
responding correlation functions denoted by ρ0(d ), ρ1(d ) and
ρ2(d ), respectively. These three correlation functions, together,
contain all the information on ρ(d). The structure of the three
sublattices is shown in figure 5b, and is described in detail in
the appendix and in [51]. Each sublattice contains one-third
of the lattice sites. An origin is chosen arbitrarily on the lat-
tice, which defines a site on sublattice 0, and the remaining
sites are assigned to one of the three sublattices as shown
in figure 5b. We can then consider a in equation (3.1) to be
the chosen origin and the vector d is from the origin to
each other site (each belonging to its own sublattice) in the
lattice. The averaging over a in equation (3.1) is then per-
formed by shifting the origin to each point of the lattice.
The result is three one-dimensional correlation functions
ρi(d ) for i = 0, 1, 2, that together represent the two-
dimensional correlation function ρ(d). An advantage of this
representation is that while ρ(d) is a rapidly fluctuating
function of d, each ρi(d ) is a smoothly varying function of d.

Note that sublattice 0 is triangular with a lattice spacing of
ffiffiffi

3
p

, where we take the spacing of the underlying triangular
lattice to be unity, and connects second nearest neighbours
of the underlying lattice (see figure 7 in the appendix), and
therefore corresponds to the myosin filament superlattice as
described above.

As noted above, the three correlation functions are com-
plicated and not amenable to exact analytical calculation.
However, for each sublattice, they decay approximately as
d−1/2 for T = 0, and for T > 0, there is an additional exponen-
tial decay, the decay rate increasing with increasing
temperature [51,53]. The correlations are positive for sublat-
tice 0 and, for small temperatures (T < 1), are negative for
sublattices 1 and 2. The correlation functions are similar on
sublattices 1 and 2. Approximate analytical expressions are
available for the correlation function [52,53], but these are
of limited accuracy, especially for T > 0. We have derived
empirical approximations to the correlation function that
are quite accurate [51] and we use these for the calculations
presented here.
3.3. Fitting the micrograph rotation data to the TIA
correlation function

In view of the sublattice structure of the correlations for the TIA,
the correlations calculated from the micrograph and shown by
the filled circles in figure 4 are plotted in three colours, one for
each sublattice. The observed correlations are then seen to be
smoothly varying functions of distance on each sublattice.

To assess the TIA as a model of the myosin filament
rotation disorder, the TIA correlations are calculated and
fitted to the micrograph correlation data. Since the myofibrils
assemble at physiological temperatures, the resulting system
will not be in the ground state. Therefore, the correlation
function for the TIA is calculated for a range of rescaled
temperatures T, with ΔT = 0.01. For each temperature, the
agreement between the correlation function from the micro-
graph data and that calculated for the TIA is measured by
calculating the weighted root-mean-square difference
(RMSD) (see the electronic supplementary material), with
weights equal to the inverse of the squared standard error
for each datum, between the observed and calculated corre-
lations, for 1≤ d≤ 6. The RMSD is calculated over all three
sublattices. We refer to the temperature that gives the best
fit (smallest RMSD) as the effective temperature, denoted
Teff, of the system. The search over T is a means for searching
over Δe via equation (3.2). This minimum value of the RMSD
measures the quality of the TIA as a model of the observed
spatial distribution of the myosin filament rotations.

For themicrograph shown in figure 2a, the above procedure
results in an RMSD of 4%, indicating a good fit to the data, with
an effective temperature Teff ¼ 0:51. The TIA correlation func-
tion at this temperature, for each sublattice, is shown by the
curves in figure 4. The TIA correlations are shown as continuous
curves in figure 4 for clarity, although they exist only at the dis-
crete d values of the corresponding sublattice. The experimental
and calculated values are compared by comparing the exper-
imental points (filled circles) with the values on the curve of
the same colour at the same value of d. Inspection of the
figure shows good agreement between themeasured and calcu-
lated correlations, within the error bars, and also indicated by
the small RMSD. Even the rather subtly different behaviour of
the correlations on sublattices 1 and 2 is seen in the data. For
reference, if the distribution of the filament rotations were
random, then the correlation function would be equal to zero
for all d > 0, which clearly does not fit the data, and gives a sig-
nificantly larger RMSD of 13.5%. The good agreement for the
TIA strongly supports this model of filament rotations over a
model of random rotations.

The same analysis was conducted for the 14 other myofi-
brils, and the measured and calculated correlation functions
are shown in the electronic supplementary material. In all
cases, significant correlations are seen out to a distance of 6 lat-
tice spacings, indicating well-developed geometric frustration.
The effective temperatures and corresponding RSMDs are
listed in table 1. The small RMSDs indicate good agreement
with the TIA model in all cases. Also listed in the table is
the corresponding RMSD, for each micrograph, for a model
of random filament rotations, and the ratio, denoted R, of
this RMSD to that for the TIA model. Large values of R
(R > 1) indicate the degree to which the TIA model is preferred
over a random model. The RMSDs for the random model are
all significantly larger than for the TIA model, with a ratio
greater than three in most cases, indicating a strong preference



Table 1. Effective temperatures, Teff , and RMSD, for the 15 myofibrils. N is
the number of myosin filaments in the myofibril used for the correlation
calculations.

myofibril N Teff

RMSD

RTIA random

frog 1 552 0.51 0.040 0.135 3.38

frog 2 1660 0.55 0.016 0.118 7.38

frog 3 281 0.40 0.040 0.181 4.53

frog 4 578 0.49 0.043 0.144 3.35

frog 5 495 0.56 0.047 0.139 2.96

frog 6 476 0.42 0.034 0.172 5.06

frog 7 541 0.58 0.049 0.131 2.67

frog 8 497 0.50 0.037 0.143 3.86

frog 9 780 0.48 0.041 0.154 3.76

shark 1 310 0.76 0.053 0.089 1.19

shark 2 403 0.73 0.067 0.078 1.56

shark 3 1879 0.71 0.037 0.071 2.43

polypterus 1 637 0.52 0.023 0.123 5.35

polypterus 2 296 0.52 0.044 0.126 2.86

turtle 283 0.43 0.046 0.154 3.38
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Figure 6. The interactions between three adjacent myosin filaments (A–C),
where B and C have the same rotation, which is different from that of A. Each
filament has threefold symmetry about the filament axis, which relates pairs
of up (U) and down (D) bundles of parallel myosin molecules [33]. The pre-
ferred filament pair interactions A to B and A to C result in preferred
M-bridge interactions between parallel (U to U or D to D) myosin molecules,
compared to the U to D interaction, which is energetically less favourable.
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for the TIA model. The effective temperatures are similar at
Teff � 0:5 for most of the micrographs, indicating that the
TIA represents a universal model of the superlattice disorder.
An exception is the shark muscle myofibrils with Teff � 0:7,
although there is still a good fit to the TIA model, but with
a different effective temperature. The value of R is smaller
for the shark myofibrils, since the larger Teff corresponds to
a more random distribution of rotations.
4. Discussion and conclusion
Analysis of the second-order statistics of the myosin filament
rotations in vertebrate striated muscle shows that the myosin
superlattice is well described by the TIA. The degree of dis-
order is similar for all species except for the shark muscle,
which shows more disorder.

The packing and the rotational relationships between the
myosin filaments are fixed, and anchored in the M-band,
during assembly of the sarcomere. The next sarcomere
along the myofibril involves a different set of myosin fila-
ments and a different M-band. The connection between two
contiguous sarcomeres is through the Z-line (figure 1),
which has a different symmetry from the myosin lattice.
Therefore, the fibril assembly and packing in one sarcomere
can be considered in isolation, independent of the other sar-
comeres. The superlattice structure in one sarcomere as seen
in the electron micrographs is therefore a two-dimensional
(2D) phenomenon, determined by the energetics of the 2D
Ising model as described here. Therefore, the effective temp-
eratures determined here can be used to assess the energy
difference that might contribute to the formation of the super-
lattice, as opposed to the simple lattice, in one sarcomere.

The energy difference, Δe, between like and unlike adjacent
myosin filament rotations is estimated, using equation (3.2), as
De ¼ 2kTe=Teff, where Te is the temperature at the time of sarco-
mere assembly, which we take as a physiological temperature
of 300K. For the frog sartorius specimens, the average effective
temperature is Teff ¼ 0:50, which gives Δe = 10.0 kJ mol−1. This
value is similar to the stabilization energies contributedbyhydro-
gen bonds and other weak protein–protein interactions [54,55].

The relative rotation of adjacent filaments is expected to
be driven primarily by the protein cross-links, or so-called
M-bridges, in the M-band region (figure 1b). This interaction is
believed to bemediated, primarily, at two positions on each fila-
ment, by two myomesin molecules at the M-bridges [34]. The
energy difference Δe between the two different myosin filament
pair rotations (like or unlike) in a single sarcomere is therefore
expected to be dominated by these two myomesin cross-links.

The myosin filament backbone in the M-band region is
made up of six bundles of myosin molecules, each bundle
containing parallel molecules [33], with three bundles point-
ing up and three pointing down, as shown in figure 6. Pairs
of up and down bundles are related by threefold symmetry
(which is the source of the triangular cross-section seen in
the bare-region micrographs). A consideration of the sym-
metry within the filament and the filament packing shows
that with the preferred adjacent unlike rotations of the
myosin filaments, the preferred interactions are between par-
allel, rather than antiparallel, myosin molecules (figure 6).

The preferred, i.e. lower energy, interaction between the par-
allel molecules is mediated by two M-bridges, suggesting an
energydifference of about 5.0 kJ mol−1 perM-bridge or permyo-
mesin molecule. Mutagenesis binding studies have shown that
substitution of a single amino acid can disrupt protein–protein
binding with an associated energy difference greater than 6 to
10 kJ mol−1 [56]. Therefore, sequence differences of one or two
amino acids could be sufficient to differentially produce the
superlattice or simple lattice structures.

Weacknowledge that, since thedetailedmechanismandener-
getics of the assembly of themyosin filament array are unknown,
the above conclusions are somewhat speculative. However, they
do provide some insight into the magnitude of molecular struc-
tural differences that might be involved. Furthermore, this
approach illustrates how mapping a complex biological system
to a statistical mechanical model can allow bulk observations (of



k

h

Figure 7. Sublattice structure for the sector h≥ 0 and k≥ 0. Sites labelled
0, 1 and 2 indicate the sites of sublattices 0, 1 and 2, respectively. The origin
is at the lower left corner and is on sublattice 0. The rhombohedral
superlattice joins the sites of sublattice 0, as shown in red.
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the pattern of filament rotations seen in electron micrographs in
thecurrentexample) canpotentiallybeused to infercharacteristics
(such as interaction energies) at the molecular level.

There is evidence that slow, fatigue-resistent muscle fibres
are associated with the simple lattice and that fast, fatigable
fibres are associated with the superlattice [37,43], suggesting
that the lattice type may be involved in fine-tuning the mechan-
ical behaviour of muscles. For example, if the superlattice
structure allows more efficient sharing of actin binding sites
by myosin heads, the greater number of actin–myosin inter-
actions may contribute to the greater force production of fast,
fatigable fibres [43]. Different M-line proteins of particular
fibre types may interact sufficiently differently (energetically)
with the myosin filaments to produce the different lattice types.

The other advantage of a rigorous physical description of
disorder in such systems is that it can allow a rigorous deri-
vation of other physical quantities. In the case at hand,
since diffraction from a disordered system is a function of
its second-order statistics, the long-range correlations from
the TIA model open a route for accurate calculation of
X-ray diffraction from muscle fibres, which would aid in
interpretation of such data for structure determination.

In summary,we have shown that themyosin filament lattice
in representative higher vertebrate striated muscles is a geome-
trically frustrated system—the TIA. This is a somewhat novel
appearance of statistical physics in structural biology. The
results indicate that the initial M-bridge crosslinking process
may be driven by differences in the protein–protein interaction
energies between differently oriented myosin and M-bridge
molecules. Thedifferences between the simple lattice and super-
lattice structures may be determined by sequence differences in
myosin or the M-band proteins at the level of one or two amino
acids. The resulting myosin head arrangement in the cross-
bridge region is likely to be related to the nature of the
myosin head–actin interactions during contraction, although
the details of this require further study. The reason for the
observed increased disorder in the shark muscle is also
worthy of further study. The results should allowmore accurate
calculation of diffraction by model structures for comparison
with muscle X-ray diffraction data.
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Appendix A
The sublattice structure and the correlation function for the
TIA are described in detail in [51]. Here, we provide a defi-
nition of the sublattices, and the reader is referred to [51]
for more information.

The underlying triangular lattice is indexed by the inte-
gers (h, k) as shown in figure 7, which shows the 60° sector
for h≥ 0 and k≥ 0. The sublattice (0, 1 or 2) to which each
lattice point in this sector belongs is labelled in the figure.
A precise definition of the lattice points belonging to each
sublattice is as follows. In the 30° sector h≥ 0 and 0≤ k≤ h
in figure 7, the members of each sublattice are given by

For sublattice 0 : ðh, kÞ ¼ ð3m, 3nÞ form� 0 and 0� n�m
For sublattice 1 : ðh, kÞ ¼ ð3mþ2, 3nÞ form� 0 and 0� n�m
For sublattice 2 : ðh, kÞ ¼ ð3mþ1, 3nÞ form� 0 and 0� n�m,

ðA1Þ

for integers m and n. Denoting the sublattice membership of a
lattice point (h, k) by the function L(h, k), the sublattice mem-
bership of a point (h, k) in the 30° sector 0≤ h≤ k and k≥ 0 in
figure 7, is derived from those given in equation (A 1) by

Lðh, kÞ ¼ Lðk, hÞ for 0 � h � k and k � 0: ðA 2Þ

The sublattice assignment of the remainder of the lattice
sites is generated by rotating the assignments in the 60°
sector h≥ 0 and k≥ 0 (the sector shown in figure 7) by
multiples of 60� about the origin (h, k) = (0, 0). The result is
then the sublattice structure shown in figure 5b. Sublattice 0
corresponds to the superlattice (shown in red in figure 7).
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