18 research outputs found

    High-throughput screening using multicellular tumor spheroids to reveal and exploit tumor-specific vulnerabilities

    No full text
    High-throughput drug screening (HTS) in live cells is often a vital part of the preclinical anticancer drug discovery process. So far, two-dimensional (2D) monolayer cell cultures have been the most prevalent model in HTS endeavors. However, 2D cell cultures often fail to recapitulate the complex microenvironments of in vivo tumors. Monolayer cultures are highly proliferative and generally do not contain quiescent cells, thought to be one of the main reasons for the anticancer therapy failure in clinic. Thus, there is a need for in vitro cellular models that would increase predictive value of preclinical research results. The utilization of more complex three-dimensional (3D) cell cultures, such as multicellular tumor spheroids (MCTS), which contain both proliferating and quiescent cells, has therefore been proposed. However, difficult handling and high costs still pose significant hurdles for application of MCTS for HTS. In this work, we aimed to develop novel assays to apply MCTS for HTS and drug evaluation. We also set out to identify cellular processes that could be targeted to selectively eradicate quiescent cancer cells. In Paper I, we developed a novel MCTS-based HTS assay and found that nutrient-deprived and hypoxic cancer cells are selectively vulnerable to treatment with inhibitors of mitochondrial oxidative phosphorylation (OXPHOS). We also identified nitazoxanide, an FDA-approved anthelmintic agent, to act as an OXPHOS inhibitor and to potentiate the effects of standard chemotherapy in vivo. Subsequently, in Paper II we applied the high-throughput gene-expression profiling method for MCTS-based drug screening. This led to discovery that quiescent cells up-regulate the mevalonate pathway upon OXPHOS inhibition and that the combination of OXPHOS inhibitors and mevalonate pathway inhibitors (statins) results in synergistic toxicity in this cell population. In Paper III, we developed a novel spheroid-based drug combination-screening platform and identified a set of molecules that synergize with nitazoxanide to eradicate quiescent cancer cells. Finally, in Paper IV, we applied our MCTS-based methods to evaluate the effects of phosphodiesterase (PDE) inhibitors in PDE3A-expressing cell lines. In summary, this work illustrates how MCTS-based HTS yields potential to reveal and exploit previously unrecognized tumor-specific vulnerabilities. It also underscores the importance of cell culture conditions in preclinical drug discovery endeavors

    Selective radiosensitization by nitazoxanide of quiescent clonogenic colon cancer tumour cells

    No full text
    Nitazoxanide is a Food and Drug Administration-approved antiprotozoal drug recently demonstrated to be selectively active against quiescent and glucose-deprived tumour cells. This drug also has several characteristics that suggest its potential as a radiosensitizer. The present study aimed to investigate the interaction between nitazoxanide and radiation on human colon cancer cells cultured as monolayers, and to mimic key features of solid tumours in patients, as spheroids, as well as in xenografts in mice. In the present study, colon cancer HCT116 green fluorescent protein (GFP) cells were exposed to nitazoxanide, radiation or their combination. Cell survival was analysed by using total cell kill and clonogenic assays. DNA double-strand breaks were evaluated in the spheroid experiments, and HCT116 GFP cell xenograft tumours in mice were used to investigate the effect of nitazoxanide and radiation in vivo. In the clonogenic assay, nitazoxanide synergistically and selectively sensitized cells grown as spheroids to radiation. However, this was not observed in cells cultured as monolayers, as demonstrated in the total cell kill assays, and much less with the clinically established sensitizer 5-fluorouracil. The sensitizing effect from nitazoxanide was confirmed via spheroid gamma-H2A histone family member X staining. Nitazoxanide and radiation alone similarly inhibited the growth of HCT116 GFP cell xenograft tumours in mice with no evidence of synergistic interaction. In conclusion, nitazoxanide selectively targeted quiescent glucose-deprived tumour cells and sensitized these cells to radiation in vitro. Nitazoxanide also inhibited tumour growth in vivo. Thus, nitazoxanide is a candidate for repurposing into an anticancer drug, including its use as a radiosensitizer

    A novel tumor spheroid model identifies selective enhancement of radiation by an inhibitor of oxidative phosphorylation

    No full text
    There is a need for preclinical models that can enable identification of novel radiosensitizing drugs in clinically relevant high-throughput experiments. We used a new high-throughput compatible total cell kill spheroid assay to study the interaction between drugs and radiation in order to identify compounds with radiosensitizing activity. Experimental drugs were compared to known radiosensitizers and cytotoxic drugs clinically used in combination with radiotherapy. VLX600, a novel iron-chelating inhibitor of oxidative phosphorylation, potentiated the effect of radiation in tumor spheroids in a synergistic manner. This effect was specific to spheroids and not observed in monolayer cell cultures. In conclusion, the total cell kill spheroid assay is a feasible high-throughput method in the search for novel radiosensitizers. VLX600 shows encouraging characteristics for development as a novel radiosensitizer

    In vitro discovery of promising anti-cancer drug combinations using iterative maximisation of a therapeutic index

    No full text
    In vitro-based search for promising anti-cancer drug combinations may provide important leads to improved cancer therapies. Currently there are no integrated computational-experimental methods specifically designed to search for combinations, maximizing a predefined therapeutic index (TI) defined in terms of appropriate model systems. Here, such a pipeline is presented allowing the search for optimal combinations among an arbitrary number of drugs while also taking experimental variability into account. The TI optimized is the cytotoxicity difference (in vitro) between a target model and an adverse side effect model. Focusing on colorectal carcinoma (CRC), the pipeline provided several combinations that are effective in six different CRC models with limited cytotoxicity in normal cell models. Herein we describe the identification of the combination (Trichostatin A, Afungin, 17-AAG) and present results from subsequent characterisations, including efficacy in primary cultures of tumour cells from CRC patients. We hypothesize that its effect derives from potentiation of the proteotoxic action of 17-AAG by Trichostatin A and Afungin. The discovered drug combinations against CRC are significant findings themselves and also indicate that the proposed strategy has great potential for suggesting drug combination treatments suitable for other cancer types as well as for other complex diseases

    Quantification of cell death and proliferation of patient-derived ovarian cancer organoids through 3D imaging and image analysis

    No full text
    Patient-derived organoids (PDOs) are ideal ex vivo model systems to study cancer progression and drug resistance mechanisms. Here, we present a protocol for measuring drug efficacy in three-dimensional (3D) high-grade serous ovarian cancer PDO cultures through quantification of cytotoxicity using propidium iodide incorporation in dead cells. We also provide detailed steps to analyze proliferation of PDOs using the Ki67 biomarker. We describe steps for sample processing, immunofluorescent staining, high-throughput confocal imaging, and image-based quantification for 3D cultures. For complete details on the use and execution of this protocol, please refer to Lahtinen et al. (2023).1Peer reviewe

    In vitro discovery of promising anti-cancer drug combinations using iterative maximisation of a therapeutic index

    No full text
    In vitro-based search for promising anti-cancer drug combinations may provide important leads to improved cancer therapies. Currently there are no integrated computational-experimental methods specifically designed to search for combinations, maximizing a predefined therapeutic index (TI) defined in terms of appropriate model systems. Here, such a pipeline is presented allowing the search for optimal combinations among an arbitrary number of drugs while also taking experimental variability into account. The TI optimized is the cytotoxicity difference (in vitro) between a target model and an adverse side effect model. Focusing on colorectal carcinoma (CRC), the pipeline provided several combinations that are effective in six different CRC models with limited cytotoxicity in normal cell models. Herein we describe the identification of the combination (Trichostatin A, Afungin, 17-AAG) and present results from subsequent characterisations, including efficacy in primary cultures of tumour cells from CRC patients. We hypothesize that its effect derives from potentiation of the proteotoxic action of 17-AAG by Trichostatin A and Afungin. The discovered drug combinations against CRC are significant findings themselves and also indicate that the proposed strategy has great potential for suggesting drug combination treatments suitable for other cancer types as well as for other complex diseases

    Three-Dimensional Cell Culture-Based Screening Identifies the Anthelmintic Drug Nitazoxanide as a Candidate for Treatment of Colorectal Cancer

    No full text
    Because dormant cancer cells in hypoxic and nutrient-deprived regions of solid tumors provide a major obstacle to treatment, compounds targeting those cells might have clinical benefits. Here, we describe a high-throughput drug screening approach, using glucose-deprived multicellular tumor spheroids (MCTS) with inner hypoxia, to identify compounds that specifically target this cell population. We used a concept of drug repositioning-using known molecules for new indications. This is a promising strategy to identify molecules for rapid clinical advancement. By screening 1,600 compounds with documented clinical history, we aimed to identify candidates with unforeseen potential for repositioning as anticancer drugs. Our screen identified five molecules with pronounced MCTS-selective activity: nitazoxanide, niclosamide, closantel, pyrvinium pamoate, and salinomycin. Herein, we show that all five compounds inhibit mitochondrial respiration. This suggests that cancer cells in low glucose concentrations depend on oxidative phosphorylation rather than solely glycolysis. Importantly, continuous exposure to the compounds was required to achieve effective treatment. Nitazoxanide, an FDA-approved antiprotozoal drug with excellent pharmacokinetic and safety profile, is the only molecule among the screening hits that reaches high plasma concentrations persisting for up to a few hours after single oral dose. Nitazoxanide activated the AMPK pathway and downregulated c-Myc, mTOR, and Wnt signaling at clinically achievable concentrations. Nitazoxanide combined with the cytotoxic drug irinotecan showed anticancer activity in vivo. We here report that the FDA-approved anthelmintic drug nitazoxanide could be a potential candidate for advancement into cancer clinical trials. (C) 2015 AACR.Funding Agencies|Swedish Cancer Society; Swedish Foundation for Strategic Research; Swedish Research Council; Lions Cancer Research Fund; Strategiska Forskningsstiftelsen (SSF); Lions Cancerforskningsfond; Cancerfonden; Barncancerfonden; Radiumhemmets Forskningsfonder; Vetenskapsradet; SSF</p

    Descriptive Proteome Analysis to Investigate Context-Dependent Treatment Responses to OXPHOS Inhibition in Colon Carcinoma Cells Grown as Monolayer and Multicellular Tumor Spheroids

    No full text
    We have previously identified selective upregulation of the mevalonate pathway genes upon inhibition of oxidative phosphorylation (OXPHOS) in quiescent cancer cells. Using mass spectrometry-based proteomics, we here investigated whether these responses are corroborated on the protein level and whether proteomics could yield unique insights into context-dependent biology. HCT116 colon carcinoma cells were cultured as monolayer cultures, proliferative multicellular tumor spheroids (P-MCTS), or quiescent (Q:MCTS) multicellular tumor spheroids and exposed to OXPHOS inhibitors: nitazoxanide, FCCP, oligomycin, and salinomycin or the HMG-CoA-reductase inhibitor simvastatin at two different doses for 6 and 24 h. Samples were processed using an in-depth bottom-up proteomics workflow resulting in a total of 9286 identified protein groups. Gene set enrichment analysis showed profound differences between the three cell systems and confirmed differential enrichment of hypoxia, OXPHOS, and cell cycle progression-related protein responses in P-MCTS and QMCTS. Treatment experiments showed that the observed drug-induced alterations in gene expression of metabolically challenged cells are not translated directly to the protein level, but the results reaffirmed OXPHOS as a selective vulnerability of quiescent cancer cells. This work provides rationale for the use of deep proteome profiling to identify context-dependent treatment responses and encourages further studies investigating metabolic processes that could be co-targeted together with OXPHOS to eradicate quiescent cancer cells

    Conditions for maintenance of hepatocyte differentiation and function in 3D cultures

    No full text
    Spheroid cultures of primary human hepatocytes (PHH) are used in studies of hepatic drug metabolism and toxicity. The cultures are maintained under different cone-lions, with possible confounding results. We performed an in-depth analysis of the influence of various culture conditions to find the optimal conditions for the maintenance of an in vivo like phenotype. The formation, protein expression, and function of PHH spheroids were followed for three weeks in a high-throughput 384-well format. Medium composition affected spheroid histology, global proteome profile, drug metabolism and drug-induced toxicity. No epithelial-mesenchymel transition was observed. Media with fasting glucose and insulin levels gave spheroids with phenotypes closest to normal PHH. The most expensive medium resulted in PHH features most divergent from that of native PHH. Our results provide a protocol for culture of healthy PHH with maintained function a prerequisite for studies of hepatocyte homeostasis and more reproducible hepatocyte research
    corecore