53 research outputs found

    Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin

    Get PDF
    Background:Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way.Methodology/Principal Findings:Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the μM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro.Conclusions/Significance:These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax. © 2013 Beitzinger et al

    Cell Type Mediated Resistance of Vesicular Stomatitis Virus and Sendai Virus to Ribavirin

    Get PDF
    Ribavirin (RBV) is a synthetic nucleoside analog with broad spectrum antiviral activity. Although RBV is approved for the treatment of hepatitis C virus, respiratory syncytial virus, and Lassa fever virus infections, its mechanism of action and therapeutic efficacy remains highly controversial. Recent reports show that the development of cell-based resistance after continuous RBV treatment via decreased RBV uptake can greatly limit its efficacy. Here, we examined whether certain cell types are naturally resistant to RBV even without prior drug exposure. Seven different cell lines from various host species were compared for RBV antiviral activity against two nonsegmented negative-strand RNA viruses, vesicular stomatitis virus (VSV, a rhabdovirus) and Sendai virus (SeV, a paramyxovirus). Our results show striking differences between cell types in their response to RBV, ranging from virtually no antiviral effect to very effective inhibition of viral replication. Despite differences in viral replication kinetics for VSV and SeV in the seven cell lines, the observed pattern of RBV resistance was very similar for both viruses, suggesting that cellular rather than viral determinants play a major role in this resistance. While none of the tested cell lines was defective in RBV uptake, dramatic variations were observed in the long-term accumulation of RBV in different cell types, and it correlated with the antiviral efficacy of RBV. While addition of guanosine neutralized RBV only in cells already highly resistant to RBV, actinomycin D almost completely reversed the RBV effect (but not uptake) in all cell lines. Together, our data suggest that RBV may inhibit the same virus via different mechanisms in different cell types depending on the intracellular RBV metabolism. Our results strongly point out the importance of using multiple cell lines of different origin when antiviral efficacy and potency are examined for new as well as established drugs in vitro

    Early and Late Pathomechanisms in Alzheimer’s Disease: From Zinc to Amyloid-β Neurotoxicity

    Get PDF

    Substrate recognition by P-glycoprotein and the multidrug resistance-associated protein MRP1 : a comparison

    No full text
    OBJECTIVES: It has recently been suggested that substrate recognition patterns for human P-glycoprotein encoded by mdr1 consist of two electron donor groups with a spatial separation of 2.5 +/- 0.3 A (type I units) or three electron donor groups with a spatial separation of the two outer groups of 4.6 +/- 0.6 A (type II units) [Seelig 1998]. Since P-gp and the multidrug resistance-associated protein (MRP1) have overlapping substrate specificity, we screened the chemical structures of 21 compounds, previously tested as MRP1 substrates, for electron donor units. In addition, we searched the putative transmembrane domains (TMD 1-12) of P-gp and (TMD 6-17) of MRP1 for amino acid side chains having the potential to interact with the respective substrates. METHODS: The three-dimensional structures of potential MRP1 substrates were modeled with a force-field approach and were then screened for electron donor units. Helical wheel projections of the 12 putative transmembrane domains of P-gp (1-12) and MRP (6-17) were analyzed for their content of amino acid residues with hydrogen bonding side chains, charged amino acid residues, and amino acid residues with pi-electron systems. RESULTS: MRP1 recognizes compounds with type I and type II units. At least one electrically neutral together with either one negatively charged type I unit or two electrically neutral type I units are required for the compound to be bound and transported. Transport increases with increasing number of electron donor units. Compounds which carry exclusively electrically neutral type I units (P-gp substrates) are transported only weakly by MRP1, and compounds with cationic type I units (P-gp substrates) are not transported at all. An analysis of the putative transmembrane alpha-helices of MRP1 and P-gp reveals that the amino acid residues with hydrogen-bond donor side chains are arranged preferentially on one side of the helix and amino acid residues with inert (non-hydrogen-bonding) side chains on the other side. In the case of MRP1, the hydrogen-bonding face also contains several cationic residues whereas, in the case of P-gp, it contains clusters of amino acid residues with beta-electron systems. CONCLUSIONS: We propose that P-gp and MRP1 recognize type I or type II units in chemical compounds having diverse structures, and that these transporters bind their substrates via hydrogen bond formation. Furthermore, we propose that transport of anionic substrates by MRP1 is facilitated by cationic amino acid residues present in the transmembrane helices of MRP1, whereas the transport of cationic substrates by P-gp is facilitated by a beta-electron slide guide

    Noise in solid-state nanopores

    No full text
    We study ionic current fluctuations in solid-state nanopores over a wide frequency range and present a complete description of the noise characteristics. At low frequencies (f ≲ 100 Hz) we observe 1/f-type of noise. We analyze this low-frequency noise at different salt concentrations and find that the noise power remarkably scales linearly with the inverse number of charge carriers, in agreement with Hooge's relation. We find a Hooge parameter α = (1.1 ± 0.1) × 10−4. In the high-frequency regime (f ≳ 1 kHz), we can model the increase in current power spectral density with frequency through a calculation of the Johnson noise. Finally, we use these results to compute the signal-to-noise ratio for DNA translocation for different salt concentrations and nanopore diameters, yielding the parameters for optimal detection efficiency
    corecore