120 research outputs found

    Trace element mobility during Corg-enhanced denitrification in two different aquifers

    Get PDF
    Nitrate (NO3−)-polluted groundwater treatment by enhanced denitrification is becoming increasingly important due to rising NO3− concentrations and decreasing degradation capacities in aquifers. Besides evaluating the efficacy of substrates added to trigger denitrification, secondary reactions must be closely monitored. Biodenitrification by applied organic carbon (Corg) can lead to considerable changes in redox potential (Eh) and pH, two decisive parameters for trace element mobility. In this study, two geologically and hydrogeochemically different groundwater catchments important for drinking water production were investigated and compared. Sediments were analyzed for trace elements as well as sulfur (S) and carbon (C) contents. Ongoing hydrogeochemical reactions were evaluated with depth-specific isotope characterization, and the potential for trace element mobilization by Corg addition was determined in column experiments. Results for enhanced denitrification showed up to 3.8 times lower reaction rates with respect to comparable studies, probably due to incomplete formation of the necessary denitrifying bacteria. Concentrations of trace elements such as nickel (Ni) must also be considered when evaluating enhanced denitrification, as these can negatively affect microorganisms. Added ethanol led to Ni concentrations dropping from 0.013 mg/L to below the detection limit. Thus, Corg addition may not only induce denitrification, but also lead to the immobilization of previously released trace elements

    Combined uses of water-table fluctuation (WTF), chloride mass balance (CMB) and environmental isotopes methods to investigate groundwater recharge in the Thiaroye sandy aquifer (Dakar, Senegal)

    Get PDF
    The quaternary sandy sediments which cover most part of the Cap Vert peninsula bear considerable groundwater resources. The aquifer lying beneath a densely populated suburb zone is encountered with major issues such as induced recharge from anthropogenic surface derived pollution and rising water table to ground surface. The present study was aimed at investigating the recharge in the unconfined aquifer of Thiaroye zone using both water table fluctuation (WTF), chloride mass balance(CMB) methods and environmental isotopes. Seasonal fluctuations of groundwater in response to precipitation are monitored during time period (2010 to 2011) using “Thalimede Orpheus mini” recorders in two piezometers (P3-1 and PSQ1) as well as long term record. Chemical and isotopic characterization of groundwater, rainfall and the unsaturated zone were also carried out using a network of 48 points consisting of 8 rainfall stations, 10 unsaturated zone profiles and 30 dug wells, boreholes and piezometers. The concentrations of chloride in rainwater are between 3.2 and 53.4 mg/L. These unsaturated zone profiles range from 65 and 572 mg/L. The recharge obtained by WTF method ranged between 18 and 144 mm during the rainy season (June to October), whereas the recharge givenby CMB method ranged between 8.7 and 73 mm/year. The Thiaroye aquifer recharge obtained from these different methods also showed relatively similar range values. In this study, the WTF method applied computes both infiltration from rainwater and domestic waste water, while the CMB method estimates potential recharge from rainwater. Therefore, in the urban area, the CMB method cannot be applied due to the chloride input from waste water infiltration.Key words: Thiaroye basin, recharge, isotopes, chloride mass balance (CMB), quaternary sandy aquifer (Dakar)

    Monitoring nitrate reduction: hydrogeochemistry and clogging potential in raw water wells.

    Get PDF
    The mainly agricultural input of NO3- and compliance with drinking water guideline values pose major challenges for many water suppliers. Additionally, associated changes in hydrochemistry, especially concerning products of NO3- reduction (Fe2+/3+, Mn2+/4+, Ca2+, Mg2+, SO42-, HCO3-) and subsequent reactions, can have a major influence on mineral saturation states and well yield: well productivity can be strongly reduced by mineral precipitation and silting. To evaluate hydrogeochemical evolution and clogging potential for a given well field, thorough hydrochemical and geochemical investigations are required. Therefore, time-dependent and depth-specific ion concentrations in water samples (n = 818) were analysed in a catchment area of a waterworks in western Germany. The sediments of the aquifers were extensively investigated for their geochemistry (CS, scanning electron microscope, aqua regia digestion and dithionite solution; n = 253). In addition, PhreeqC was used to model saturation indices in order to identify possible mineral precipitation in the wells. Results show a high NO3- input into deep wells screened in Tertiary sediments due to an admixture of Quaternary groundwater. Directly at the Quaternary-Tertiary boundary, chemolithotrophic NO3- reduction consuming pyrite occurs. Protons released during the process are pH-buffered by dissolving carbonate minerals. Overall, the hydrochemistry and especially the saturation indices are strongly influenced by NO3- reduction and its degradation products. A change in well yield has not yet been observed, but future clogging by ochre formation or sintering cannot be excluded

    Predisposing and triggering factors of large-scale landslides in Debre Sina area, central Ethiopian highlands

    Get PDF
    A large number of landslide events have repeatedly struck the border zone of the northwestern plateaus of Ethiopia. Debre Sina area is one of the most tectonically active areas located along the western margin of the Afar depression, which is frequently affected by landslides. Despite that, urban and rural development is currently active in almost the entire area. It is crucial, therefore, to understand the main causes and failure mechanisms of landslides in the Debre Sina area and its surroundings. The present study investigated landslides using field mapping of geological and geomorphological features, remote sensing, geo-morphometric analysis, structural analysis, rainfall data, landslide inventory, and earthquake data. The results of the study indicate that large-scale and deep-seated landslide problems appear to be caused by complex geological settings and rugged topography. In particular, the location and morphology of the Yizaba Wein and Shotel Amba landslides are strongly controlled by geological structures. Their flanks are bounded by high angle faults, and their main basal failure surfaces have developed within a W–E striking eastward-dipping normal fault zone. The complex litho-structural and morphologic settings play a vital role in controlling the geometry of the slip surfaces and the stability of the landslides

    The effect of hydrogeological and hydrochemical dynamics on landslide triggering in the central highlands of Ethiopia

    Get PDF
    The volcanic terrain at the western margin of the Main Ethiopian Rift in the Debre Sina area is known for its slope stability problems. This report describes research on the effects of the hydrogeological and hydrochemical dynamics on landslide triggering by using converging evidence from geological, geomorphological, geophysical, hydrogeochemical and isotopic investigations. The chemical characterization indicates that shallow to intermediate aquifers cause groundwater flow into the landslide mass, influencing long-term groundwater-level fluctuations underneath the landslide and, as a consequence, its stability. The low content of total dissolved solids and the bicarbonate types (Ca–Mg–HCO3 and Ca–HCO3) of the groundwater, and the dominantly depleted isotopic signature, indicate a fast groundwater flow regime that receives a high amount of precipitation. The main causes of the landslide are the steep slope topography and the pressure formed during precipitation, which leads to an increased weight of the loose and weathered materials. The geophysical data indicate that the area is covered by unconsolidated sediments and highly decomposed and weak volcanic rocks, which are susceptible to sliding when they get moist. The heterogeneity of the geological materials and the presence of impermeable layers embodied within the highly permeable volcanic rocks can result in the build-up of hydrostatic pressure at their interface, which can trigger landslides. Intense fracturing in the tilted basalt and ignimbrite beds can also accelerate infiltration of water, resulting to the build-up of high hydrostatic pressure causing low effective normal stress in the rock mass, giving rise to landslides

    Comparison of denitrification induced by various organic substances - reaction rates, microbiology and temperature effect

    Get PDF
    Widespread groundwater pollution with nitrate (NO3−) and the finite and decreasing geogenic NO3− degradation capacity in aquifers require a better understanding of potential treatment methods. This project aimed at exploring and comparing the efficiency of four organic substances as electron donors for heterotrophic denitrification. Circulation column experiments using sediment without NO3− degradation capacity and high agricultural NO3− groundwater were conducted. Acetate, glucose, ascorbic acid, and ethanol were added to these columns in three concentration steps to induce biological denitrification, whereby also temperature dependence of denitrification rates (room temperature and typical groundwater temperature of 10°C) was taken into account. Results show denitrification with all four carbon (C) sources with intensities varying considerably between electron donors. Comparison of the two temperature approaches shows substantial differences between applied organic substances and indicates T as an important variable for denitrification. Ethanol is clearly the most effective electron donor for biodenitrification in groundwater investigated in this study, with a stronger and more effective NO3− degradation at 10°C than at room temperature. In contrast, much higher reaction rates are achieved with glucose at room temperature, compared to 10°C. Denitrification with ascorbic acid is very low at both temperatures; its addition produces biomass which repeatedly led to column clogging. In the entire test series, nitrite (NO2−) accumulation occurred more frequently and in higher concentrations at 10°C. Analysis of microorganisms shows a strong modification in microbial community in reaction to the addition of different organic C as well as between the two temperature approaches

    The influence of Karst Aquifer mineralogy and geochemistry on groundwater characteristics: West Bank, Palestine

    Get PDF
    This work reports, for the first time, the mineralogical and geochemical characteristics of karst aquifers in the Central West Bank (CWB) catchment in Palestine. It provides an integrated study approach by correlating the geochemistry of the lithology and hydrochemical data of groundwater samples. Mineralogical analysis showed that all of the samples were dominantly composed of either calcite CaCO3 (5–100 wt. %) or dolomite CaMg(CO3)2 (4–100 wt. %), with minor amounts of quartz and feldspar, which is supported by the inorganic carbon content (9–13 wt. %) and hydrochemical composition of the spring water samples. The whole-rock geochemical data indicated that the samples have low contents of trace elements and transition metals. In contrast, the concentrations of alkaline earth elements (Mg, Ca, Sr, Ba) and Mn were high in the rock and groundwater samples. Generally, the trace elements of rock samples with concentrations >10 ppm included Sr (17–330 ppm), Mn (17–367 ppm), Ba (2–32 ppm), W (5–37 ppm), Cr (3–23 ppm), Zn (1.7–28 ppm), V (4–23 ppm), and Zr (1–22 ppm), while the concentrations of all the other trace elements was below 10 ppm. Ionic ratios and hierarchical cluster analysis (HCA) suggested that the chemical evolution of groundwater was mainly related to the geogenic (rock–water) interaction in the study area. This is clear in the alkaline earth elements (Mg, Ca, Sr, Ba) ratios, especially regarding the Sr values. The calcite rock samples had higher Sr (mean 160 ppm, n = 11) than those of the dolomite rocks (mean 76 ppm, n = 9)

    Tracing natural groundwater recharge to the Thiaroye aquifer of Dakar, Senegal

    Get PDF
    Urban groundwater in Sub-Saharan Africa provides vital freshwater to rapidly growing cities. In the Thiaroye aquifer of Dakar (Senegal), groundwater within Quaternary unconsolidated sands provided nearly half of the city’s water supply into the 1980s. Rising nitrate concentrations traced to faecal contamination sharply curtailed groundwater withdrawals, which now contribute just 5% to Dakar’s water supply. To understand the attenuation capacity of this urban aquifer under a monsoonal semi-arid climate, stable-isotope ratios of O and H and radioactive tritium (3H), compiled over several studies, are used together with piezometric data to trace the origin of groundwater recharge and groundwater flowpaths. Shallow groundwaters derive predominantly from modern rainfall (tritium >2 TU in 85% of sampled wells). δ18O and δ2H values in groundwater vary by >4 and 20‰, respectively, reflecting substantial variability in evaporative enrichment prior to recharge. These signatures in groundwater regress to a value on the local meteoric water line that is depleted in heavy isotopes relative to the weighted-mean average composition of local rainfall, a bias that suggests recharge derives preferentially from isotopically depleted rainfall observed during the latter part of the monsoon (September). The distribution of tritium in groundwater is consistent with groundwater flowpaths to seasonal lakes and wetlands, defined by piezometric records. Piezometric data further confirm the diffuse nature and seasonality of rain-fed recharge. The conceptual understanding of groundwater recharge and flow provides a context to evaluate attenuation of anthropogenic recharge that is effectively diffuse and constant from the vast network of sanitation facilities that drain to this aquifer

    Landscape-use optimisation with regards to the groundwater resources protection in mountain hardrock areas, LOWRGREP

    No full text
    Synthesis of work performed during the European Project LOWRGREPThis report assesses the degree of interference of human activities with the hydrosphere in mountain-zones, all located in hard-rock areas of different countries in the European Union. Each of the test-regions has a specific degree of protection: from regions with very few inhabitants and very low human impact, to regions submitted to a strong anthropogenic impact. The investigations focused on the changes in water quality and on the simulation of various alternatives leading to optimum landscape-use from the point of view of water-management. The project's own Geographic Information System was used to fulfil the following objective: present all the obtained knowledge and analyse all the data in user-friendly form (maps of water vulnerability) and make this knowledge available for potential users with, for instance, the creation and use of a web site. A simulation tool has been developed which facilitates the assessment of the impact of landscape-use on the water budget of the catchment. In all the areas investigated chloride is present, only in winter and very close to roads. Another result of this work is the decreasing impact on water of sulphur and sulphuric compounds in Germany and in the Czech Republic, while the nitrogen impact is increasing. Recommendations concerning the landscape-use presented for all the regions in particular for good practices in agricultur

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
    corecore