132 research outputs found
Integrated Pest Management (IPM) Components for Control of Armored Bush Cricket on Pearl Millet and Sorghum in Farmers' Fields in Namibia and Zambia
Armored bush crickets (Acanthoplus spp.) are sporadic pests on cereals in southern Africa. The performance of different IPM components on pearl millet [Pennisetum glaucum] in Namibia and sorghum in Namibia and Zambia is reported, based on on-farm participatory trials
NUDT2 initiates viral RNA degradation by removal of 5′-phosphates.
While viral replication processes are largely understood, comparably little is known on cellular mechanisms degrading viral RNA. Some viral RNAs bear a 5 '-triphosphate (PPP-) group that impairs degradation by the canonical 5 '-3 ' degradation pathway. Here we show that the Nudix hydrolase 2 (NUDT2) trims viral PPP-RNA into monophosphorylated (P)-RNA, which serves as a substrate for the 5 '-3 ' exonuclease XRN1. NUDT2 removes 5 '-phosphates from PPP-RNA in an RNA sequence- and overhang-independent manner and its ablation in cells increases growth of PPP-RNA viruses, suggesting an involvement in antiviral immunity. NUDT2 is highly homologous to bacterial RNA pyrophosphatase H (RppH), a protein involved in the metabolism of bacterial mRNA, which is 5 '-tri- or diphosphorylated. Our results show a conserved function between bacterial RppH and mammalian NUDT2, indicating that the function may have adapted from a protein responsible for RNA turnover in bacteria into a protein involved in the immune defense in mammals. RNA of some viruses is protected from degradation by a 5 ' triphosphate group. Here the authors identify nudix hydrolase 2 (NUDT2) as novel antiviral defense protein that dephosphorylates viral RNA and thereby enables its degradation.We thank the core facility of the MPI of biochemistry for support
Expanding the clinical spectrum associated with defects in CNTNAP2 and NRXN1
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Heterozygous copy-number and missense variants in CNTNAP2 and NRXN1 have repeatedly been associated with a wide spectrum of neuropsychiatric disorders such as developmental language and autism spectrum disorders, epilepsy and schizophrenia. Recently, homozygous or compound heterozygous defects in either gene were reported as causative for severe intellectual disability. Methods 99 patients with severe intellectual disability and resemblance to Pitt-Hopkins syndrome and/or suspected recessive inheritance were screened for mutations in CNTNAP2 and NRXN1. Molecular karyotyping was performed in 45 patients. In 8 further patients with variable intellectual disability and heterozygous deletions in either CNTNAP2 or NRXN1, the remaining allele was sequenced. Results By molecular karyotyping and mutational screening of CNTNAP2 and NRXN1 in a group of severely intellectually disabled patients we identified a heterozygous deletion in NRXN1 in one patient and heterozygous splice-site, frameshift and stop mutations in CNTNAP2 in four patients, respectively. Neither in these patients nor in eight further patients with heterozygous deletions within NRXN1 or CNTNAP2 we could identify a defect on the second allele. One deletion in NRXN1 and one deletion in CNTNAP2 occurred de novo, in another family the deletion was also identified in the mother who had learning difficulties, and in all other tested families one parent was shown to be healthy carrier of the respective deletion or mutation. Conclusions We report on patients with heterozygous defects in CNTNAP2 or NRXN1 associated with severe intellectual disability, which has only been reported for recessive defects before. These results expand the spectrum of phenotypic severity in patients with heterozygous defects in either gene. The large variability between severely affected patients and mildly affected or asymptomatic carrier parents might suggest the presence of a second hit, not necessarily located in the same gene.Peer Reviewe
Identification of FOXP1 Deletions in Three Unrelated Patients with Mental Retardation and Significant Speech and Language Deficits
Mental retardation affects 2-3% of the population and shows a high heritability. Neurodevelopmental disorders that include pronounced impairment in language and speech skills occur less frequently. For most cases, the molecular basis of mental retardation with or without speech and language disorder is unknown due to the heterogeneity of underlying genetic factors. We have used molecular karyotyping on 1523 patients with mental retardation to detect copy number variations (CNVs) including deletions or duplications. These studies revealed three heterozygous overlapping deletions solely affecting the forkhead box P1 (FOXP1) gene. All three patients had moderate mental retardation and significant language and speech deficits. Since our results are consistent with a de novo occurrence of these deletions, we considered them as causal although we detected a single large deletion including FOXP1 and additional genes in 4104 ancestrally matched controls. These findings are of interest with regard to the structural and functional relationship between FOXP1 and FOXP2. Mutations in FOXP2 have been previously related to monogenic cases of developmental verbal dyspraxia. Both FOXP1 and FOXP2 are expressed in songbird and human brain regions that are important for the developmental processes that culminate in speech and language. ©2010 Wiley-Liss, Inc
Metabolic Activation of Intrahepatic CD8+ T Cells and NKT Cells Causes Nonalcoholic Steatohepatitis and Liver Cancer via Cross-Talk with Hepatocytes
SummaryHepatocellular carcinoma (HCC), the fastest rising cancer in the United States and increasing in Europe, often occurs with nonalcoholic steatohepatitis (NASH). Mechanisms underlying NASH and NASH-induced HCC are largely unknown. We developed a mouse model recapitulating key features of human metabolic syndrome, NASH, and HCC by long-term feeding of a choline-deficient high-fat diet. This induced activated intrahepatic CD8+ T cells, NKT cells, and inflammatory cytokines, similar to NASH patients. CD8+ T cells and NKT cells but not myeloid cells promote NASH and HCC through interactions with hepatocytes. NKT cells primarily cause steatosis via secreted LIGHT, while CD8+ and NKT cells cooperatively induce liver damage. Hepatocellular LTβR and canonical NF-κB signaling facilitate NASH-to-HCC transition, demonstrating that distinct molecular mechanisms determine NASH and HCC development
Attenuated effector T cells are linked to control of chronic HBV infection
Hepatitis B virus (HBV)-specific CD8+ T cells play a dominant role during acute-resolving HBV infection but are functionally impaired during chronic HBV infection in humans. These functional deficits have been linked with metabolic and phenotypic heterogeneity, but it has remained unclear to what extent different subsets of HBV-specific CD8+ T cells still suppress viral replication. We addressed this issue by deep profiling, functional testing and perturbation of HBV-specific CD8+ T cells during different phases of chronic HBV infection. Our data revealed a mechanism of effector CD8+ T cell attenuation that emerges alongside classical CD8+ T cell exhaustion. Attenuated HBV-specific CD8+ T cells were characterized by cytotoxic properties and a dampened effector differentiation program, determined by antigen recognition and TGFβ signaling, and were associated with viral control during chronic HBV infection. These observations identify a distinct subset of CD8+ T cells linked with immune efficacy in the context of a chronic human viral infection with immunotherapeutic potential
A liver immune rheostat regulates CD8 T cell immunity in chronic HBV infection
Chronic hepatitis B virus (HBV) infection affects 300 million patients worldwide1,2, in whom virus-specific CD8 T cells by still ill-defined mechanisms lose their function and cannot eliminate HBV-infected hepatocytes3–7. Here we demonstrate that a liver immune rheostat renders virus-specific CD8 T cells refractory to activation and leads to their loss of effector functions. In preclinical models of persistent infection with hepatotropic viruses such as HBV, dysfunctional virus-specific CXCR6+ CD8 T cells accumulated in the liver and, as a characteristic hallmark, showed enhanced transcriptional activity of cAMP-responsive element modulator (CREM) distinct from T cell exhaustion. In patients with chronic hepatitis B, circulating and intrahepatic HBV-specific CXCR6+ CD8 T cells with enhanced CREM expression and transcriptional activity were detected at a frequency of 12–22% of HBV-specific CD8 T cells. Knocking out the inhibitory CREM/ICER isoform in T cells, however, failed to rescue T cell immunity. This indicates that CREM activity was a consequence, rather than the cause, of loss in T cell function, further supported by the observation of enhanced phosphorylation of protein kinase A (PKA) which is upstream of CREM. Indeed, we found that enhanced cAMP–PKA-signalling from increased T cell adenylyl cyclase activity augmented CREM activity and curbed T cell activation and effector function in persistent hepatic infection. Mechanistically, CD8 T cells recognizing their antigen on hepatocytes established close and extensive contact with liver sinusoidal endothelial cells, thereby enhancing adenylyl cyclase–cAMP–PKA signalling in T cells. In these hepatic CD8 T cells, which recognize their antigen on hepatocytes, phosphorylation of key signalling kinases of the T cell receptor signalling pathway was impaired, which rendered them refractory to activation. Thus, close contact with liver sinusoidal endothelial cells curbs the activation and effector function of HBV-specific CD8 T cells that target hepatocytes expressing viral antigens by means of the adenylyl cyclase–cAMP–PKA axis in an immune rheostat-like fashion.</p
Orexin-A is Associated with Increases in Cerebrospinal Fluid Phosphorylated-Tau in Cognitively Normal Elderly Subjects
Study Objectives:
To evaluate the role of orexin-A with respect to cerebrospinal fluid (CSF) Alzheimer disease (AD) biomarkers, and explore its relationship to cognition and sleep characteristics in a group of cognitively normal elderly individuals.
Methods:
Subjects were recruited from multiple community sources for National Institutes of Health supported studies on normal aging, sleep and CSF biomarkers. Sixty-three participants underwent home monitoring for sleep-disordered breathing, clinical, sleep and cognitive evaluations, as well as a lumbar puncture to obtain CSF. Individuals with medical history or with magnetic resonance imaging evidence of disorders that may affect brain structure or function were excluded. Correlation and linear regression analyses were used to assess the relationship between orexin-A and CSF AD-biomarkers controlling for potential sociodemographic and sleep confounders.
Results:
Levels of orexin-A, amyloid beta 42 (Aβ42), phosphorylated-tau (P-Tau), total-tau (T-Tau), Apolipoprotein E4 status, age, years of education, reported total sleep time, number of awakenings, apnea-hypopnea indices (AHI), excessive daytime sleepiness, and a cognitive battery were analyzed. Subjects were 69.59 ± 8.55 years of age, 57.1% were female, and 30.2% were apolipoprotein E4+. Orexin-A was positively correlated with Aβ42, P-Tau, and T-Tau. The associations between orexin-A and the AD-biomarkers were driven mainly by the relationship between orexin-A and P-Tau and were not influenced by other clinical or sleep characteristics that were available.
Conclusions:
Orexin-A is associated with increased P-Tau in normal elderly individuals. Increases in orexin-A and P-Tau might be a consequence of the reduction in the proportion of the deeper, more restorative slow wave sleep and rapid eye movement sleep reported with aging.
Clinical Trial Registration:
Clinicaltrials.gov registration number NCT01962779.
Significance
Orexin is a key regulator of sleep-wake homeostasis. Deposition of abnormal phosphorylated tau (P-Tau) in neurons and glia is one of the major features of Alzheimer's disease (AD). Our results show a positive association between cerebrospinal fluid (CSF) levels of orexin-A and P-Tau in a group of cognitively normal elderly. Further, this correlation was not influenced by total sleep time, number of awakenings or sleep disordered breathing. Both findings could be explained by the decrease in the proportion of deeper restorative sleep stages that is part of normal aging or, alternatively, by AD pathology causing orexin dysfunction early in the disease process. Understanding the role of orexin dysfunction in older adults might help unfold new preventive therapies for AD
- …