985 research outputs found

    Systemic Metabolomic Changes in Blood Samples of Lung Cancer Patients Identified by Gas Chromatography Time-of-Flight Mass Spectrometry.

    Get PDF
    Lung cancer is a leading cause of cancer deaths worldwide. Metabolic alterations in tumor cells coupled with systemic indicators of the host response to tumor development have the potential to yield blood profiles with clinical utility for diagnosis and monitoring of treatment. We report results from two separate studies using gas chromatography time-of-flight mass spectrometry (GC-TOF MS) to profile metabolites in human blood samples that significantly differ from non-small cell lung cancer (NSCLC) adenocarcinoma and other lung cancer cases. Metabolomic analysis of blood samples from the two studies yielded a total of 437 metabolites, of which 148 were identified as known compounds and 289 identified as unknown compounds. Differential analysis identified 15 known metabolites in one study and 18 in a second study that were statistically different (p-values <0.05). Levels of maltose, palmitic acid, glycerol, ethanolamine, glutamic acid, and lactic acid were increased in cancer samples while amino acids tryptophan, lysine and histidine decreased. Many of the metabolites were found to be significantly different in both studies, suggesting that metabolomics appears to be robust enough to find systemic changes from lung cancer, thus showing the potential of this type of analysis for lung cancer detection

    Complex sequencing rules of birdsong can be explained by simple hidden Markov processes

    Get PDF
    Complex sequencing rules observed in birdsongs provide an opportunity to investigate the neural mechanism for generating complex sequential behaviors. To relate the findings from studying birdsongs to other sequential behaviors, it is crucial to characterize the statistical properties of the sequencing rules in birdsongs. However, the properties of the sequencing rules in birdsongs have not yet been fully addressed. In this study, we investigate the statistical propertiesof the complex birdsong of the Bengalese finch (Lonchura striata var. domestica). Based on manual-annotated syllable sequences, we first show that there are significant higher-order context dependencies in Bengalese finch songs, that is, which syllable appears next depends on more than one previous syllable. This property is shared with other complex sequential behaviors. We then analyze acoustic features of the song and show that higher-order context dependencies can be explained using first-order hidden state transition dynamics with redundant hidden states. This model corresponds to hidden Markov models (HMMs), well known statistical models with a large range of application for time series modeling. The song annotation with these models with first-order hidden state dynamics agreed well with manual annotation, the score was comparable to that of a second-order HMM, and surpassed the zeroth-order model (the Gaussian mixture model (GMM)), which does not use context information. Our results imply that the hierarchical representation with hidden state dynamics may underlie the neural implementation for generating complex sequences with higher-order dependencies

    A LEED structural analysis of the Co(100) surface

    Get PDF
    The structure of the clean Co(1010) surface has been analysed by LEED. Application of a recently developed computational scheme reveals the prevalence of the termination A in which the two topmost layers exhibit a narrow spacing of 0.62 Å, corresponding to a 12.8(±0.5)% contraction with respect to the bulk value, while the spacing between the second and third layer is slightly expanded by 0.8(±0.2)%

    A compact statistical model of the song syntax in Bengalese finch

    Get PDF
    Songs of many songbird species consist of variable sequences of a finite number of syllables. A common approach for characterizing the syntax of these complex syllable sequences is to use transition probabilities between the syllables. This is equivalent to the Markov model, in which each syllable is associated with one state, and the transition probabilities between the states do not depend on the state transition history. Here we analyze the song syntax in a Bengalese finch. We show that the Markov model fails to capture the statistical properties of the syllable sequences. Instead, a state transition model that accurately describes the statistics of the syllable sequences includes adaptation of the self-transition probabilities when states are repeatedly revisited, and allows associations of more than one state to the same syllable. Such a model does not increase the model complexity significantly. Mathematically, the model is a partially observable Markov model with adaptation (POMMA). The success of the POMMA supports the branching chain network hypothesis of how syntax is controlled within the premotor song nucleus HVC, and suggests that adaptation and many-to-one mapping from neural substrates to syllables are important features of the neural control of complex song syntax

    Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.

    Get PDF
    Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives
    corecore