44 research outputs found

    Capillary forces exerted by a water bridge on cellulose nanocrystals: the effect of an external electric field

    Get PDF
    Capillary forces play an important role during the dewatering and drying of nanocellulosic materials. Traditional moisture removal techniques, such as heating, have been proved to be deterimental to the properties of these materials and hence, there is a need to develop novel dewatering techniques without affecting the desired properties of materials. It is, therefore, important to explore novel methods for dewatering these high-added-value materials without negatively influencing their properties. In this context, we explore the effect of electric field on the capillary forces developed by a liquid-water bridge between two cellulosic surfaces, which may be formed during the water removal process following its displacement from the interfibrillar spaces. All-atom molecular dynamics (MD) simulations have been used to study the influence of an externally applied electric field on the capillary force exerted by a water bridge. Our results suggest that the equilibrium contact angle of water and the capillary force exerted by the water bridge between two nanocellulosic surfaces depend on the magnitude and direction of the externally applied electric fields. Hence, an external electric field can be applied to manipulate the capillary forces between two particles. The close agreement between the capillary forces measured through MD simulations and those calculated through classical equations indicates that, within the range of the electric field applied in this study, Young-Laplace equations can be safely employed to predict the capillary forces between two particles. The present study provides insights into the use of electric fields for drying of nanocellulosic materials

    Electroassisted Filtration of Microfibrillated Cellulose: Insights Gained from Experimental and Simulation Studies

    Get PDF
    An electroassisted filtration technique has been employed to improve dewatering of a suspension of microfibrillated cellulose (MFC) produced via 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation. In addition, all-atom molecular dynamic (MD) simulations were performed to deepen the understanding of the complicated dewatering mechanism on a molecular level. Both the experimental and the simulation results implied that the dewatering rate was not only improved when electroassisted filtration was used but also found to be proportional to the strength of the electric field. A channeled dewatered structure was observed for these experiments and may have contributed to enhanced dewatering by providing high overall permeability. The MD simulations revealed that the electric field had a significant impact on the fibril movement, whereas the impact of pressure was limited. The simulations also suggested that the increased filtrate flow upon the application of an electric field was not only due to electroosmotic flow but also due to electrophoretic movement of the fibrils toward the anode that led to the release of water that had been trapped between the fibrils, allowing it to be pressed out together with the rest of the bulk water. This study shows that electroassisted filtration has the potential to improve the dewatering of TEMPO-MFC, and the MD simulations provide further insights into the dewatering mechanism

    Surface modification effects on nanocellulose - molecular dynamics simulations using umbrella sampling and computational alchemy

    Get PDF
    Topochemical modification of nanocellulose particles, in particular acetylation, is commonly used to reduce hygroscopicity and improve their dispersibility in non-polar polymers. Despite enormous experimental efforts on cellulose surface modification, there is currently no comprehensive model which considers both (a) the specific interactions between nanocellulose particles and the surrounding liquid or polymer matrix, and (b) the interactions between the particles themselves. The second mechanism is therefore frequently ignored. The present approach is based on atomistic molecular dynamics (MD) simulations, where computational alchemy is used to calculate the changes in interactions between nanocellulose and the surrounding medium (liquid or polymer) upon modification. This is combined with another method, based on potential of mean force, to calculate interactions between particles. Results show that both contributions are of equal importance for nanoparticle surface acetylation effects. The proposed method is not restricted to either cellulose or acetylation, and has the prospect to find application in a broad context of nanomaterials design

    Atomistic computer simulations of lipid bilayers

    No full text
    Computer simulation has become an important tool for the study of biomolecular systems. This thesis deals with molecular dynamics simulations of one-component lipid bilayers, which may serve as models for biological membranes. The main scientific contributions are: • It is possible to analyze the electrostatic contribution to the surface tension at a lipid-water interface in terms of dipole-dipole interactions between lipid headgroup shielded by a dielectric medium (water). The interaction can be divided into two parts. The in-plane components of the dipoles give rise to a positive, i.e. contractive contribution to the surface tension, albeit rather short ranged due to them being fluctuating dipoles. The normal components give rise to a negative, i.e. expansive contribution that will dominate the interaction at large distances. • Simulated membrane areas are extremely sensitive to details, especially the treatment of long-range electrostatic interactions. When cut-offs are used for the electrostatics, the exact definition of charge groups play an important role. Furthermore, using Ewald summation for the long-range interactions seems to have an overall stabilizing effect, and the area becomes less sensitive to other factors, such as system size and hydration. • Using atomistic simulations it is possible to study formation and evolution of a hydrophilic trans-membrane pore in detail. Free energy of pore nucleation and expansion can be calculated using potentials of mean constraint force. The resulting free energy profile shows no local maximum between the intact and pre-pore states, contrary to what is suggested by experiments. • The present force field reproduces even the slowest dynamics in the lipid chains, as reflected in NMR relaxation rates. Furthermore, since the simulated system was relatively small, the experimentally observed variation of relaxation rates with Larmor frequency cannot be explained by large scale collective dynamics, or it would not have shown up in the simulation. • Lipid lateral diffusion can be studied in detail on all relevant time scales by molecular dynamics. Using simple assumptions, the different diffusion coefficients measured on short and long times respectively can be connected in an analytic expression that fit calculated mean square displacements on timescales ranging from picoseconds to hundreds of nanoseconds.QC 2010092

    O-Methylation in Carbohydrates : An NMR and MD Simulation Study with Application to Methylcellulose

    No full text
    Methylated carbohydrates are important from both biological and technical perspectives. Specifically, methylcellulose is an interesting cellulose derivative that has applications in foods, materials, cosmetics, and many other fields. While the molecular dynamics simulation technique has the potential for both advancing the fundamental understanding of this polymer and aiding in the development of specific applications, a general drawback is the lack of experimentally validated interaction potentials for the methylated moieties. In the present study, simulations using the GROMOS 56 carbohydrate force field are compared to NMR spin–spin coupling constants related to the conformation of the exocyclic torsion angle ω in d-glucopyranose and derivatives containing a 6-O-methyl substituent and a 13C-isotopologue thereof. A 3JCC Karplus-type relationship is proposed for the C5–C6–O6–CMe torsion angle. Moreover, solvation free energies are compared to experimental data for small model compounds. Alkylation in the form of 6-O-methylation affects exocyclic torsion only marginally. Computed solvation free energies between nonmethylated and methylated molecules were internally consistent, which validates the application of these interaction potentials for more specialized purposes.

    Timescales for convergence in all-atom molecular dynamics simulations of hydrated amorphous xylan

    No full text
    Atomistic molecular dynamics simulation is an important complement to experimental techniques for investi­gating properties of hydrated carbohydrate polymers at the molecular scale. A critical problem is to determinewhether or not a simulation has converged to thermal equilibrium before data collection can begin. In this work,simulations of xylan oligomers starting from random configurations at different levels of hydration are per­formed. The simulations show clear evidence of phase separation into water-rich and polymer-rich phases athigher hydration, in spite of standard indicators of equilibrium, such as density and energy, remaining constant.Using instead a set of parameters that are coupled to the structural and dynamical heterogeneity of the system, itis shown that simulation times on the order of one microsecond are needed to reach an equilibrated state.Moreover, qualitative similarities in the temporal evolution of these parameters suggest significant interplaybetween the structure and both polymer and water dynamics.QC 20230522</p

    Cellulose and the role of hydrogen bonds : not in charge of everything

    No full text
    In the cellulose scientific community, hydrogen bonding is often used as the explanation for a large variety of phenomena and properties related to cellulose and cellulose based materials. Yet, hydrogen bonding is just one of several molecular interactions and furthermore is both relatively weak and sensitive to the environment. In this review we present a comprehensive examination of the scientific literature in the area, with focus on theory and molecular simulation, and conclude that the relative importance of hydrogen bonding has been, and still is, frequently exaggerated
    corecore