252 research outputs found
Nominally forbidden transitions in the interband optical spectrum of quantum dots
We calculate the excitonic optical absorption spectra of (In,Ga)As/GaAs
self-assembled quantum dots by adopting an atomistic pseudopotential approach
to the single-particle problem followed by a configuration-interaction approach
to the many-body problem. We find three types of allowed transitions that would
be naively expected to be forbidden. (i) Transitions that are parity forbidden
in simple effective mass models with infinite confining wells (e.g. 1S-2S,
1P-2P) but are possible by finite band-offsets and orbital-mixing effects; (ii)
light-hole--to--conduction transitions, enabled by the confinement of
light-hole states; and (iii) transitions that show and enhanced intensity due
to electron-hole configuration mixing with allowed transitions. We compare
these predictions with results of 8-band k.p calculations as well as recent
spectroscopic data. Transitions in (i) and (ii) explain recently observed
satellites of the allowed P-P transitions.Comment: Version published in Phys. Rev.
Interatomic potentials for the vibrational properties of III-V semiconductor nanostructures
We derive interatomic potentials for zinc blende InAs, InP, GaAs and GaP
semiconductors with possible applications in the realm of nanostructures. The
potentials include bond stretching interaction between the nearest and
next-nearest neighbors, a three body term and a long-range Coulomb interaction.
The optimized potential parameters are obtained by (i) fitting to bulk phonon
dispersions and elastic properties and (ii) constraining the parameter space to
deliver well behaved potentials for the structural relaxation and vibrational
properties of nanostructure clusters. The targets are thereby calculated by
density functional theory for clusters of up to 633 atoms. We illustrate the
new capability by the calculation Kleinman and Gr\"uneisen parameters and of
the vibrational properties of nanostructures with 3 to 5.5 nm diameter.Comment: 22 pages, 5 figures; Phys. Rev. B 201
Ultrafast non-linear optical signal from a single quantum dot: exciton and biexciton effects
We present results on both the intensity and phase-dynamics of the transient
non-linear optical response of a single quantum dot (SQD).
The time evolution of the Four Wave Mixing (FWM) signal on a subpicosecond
time scale is dominated by biexciton effects. In particular, for the
cross-polarized excitation case a biexciton bound state is found. In this
latter case, mean-field results are shown to give a poor description of the
non-linear optical signal at small times. By properly treating exciton-exciton
effects in a SQD, coherent oscillations in the FWM signal are clearly
demonstrated. These oscillations, with a period corresponding to the inverse of
the biexciton binding energy, are correlated with the phase dynamics of the
system's polarization giving clear signatures of non-Markovian effects in the
ultrafast regime.Comment: 10 pages, 3 figure
Experimental imaging and atomistic modeling of electron and hole quasiparticle wave functions in InAs/GaAs quantum dots
We present experimental magnetotunneling results and atomistic
pseudopotential calculations of quasiparticle electron and hole wave functions
of self-assembled InAs/GaAs quantum dots. The combination of a predictive
theory along with the experimental results allows us to gain direct insight
into the quantum states. We monitor the effects of (i) correlations, (ii)
atomistic symmetry and (iii) piezoelectricity on the confined carriers and (iv)
observe a peculiar charging sequence of holes that violates the Aufbau
principle.Comment: Submitted to Physical Review B. A version of this paper with figures
can be found at http://www.sst.nrel.gov/nano_pub/mts_preprint.pd
Reducing decoherence of the confined exciton state in a quantum dot by pulse-sequence control
We study the phonon-induced dephasing of the exciton state in a quantum dot
excited by a sequence of ultra-short pulses. We show that the multiple-pulse
control leads to a considerable improvement of the coherence of the optically
excited state. For a fixed control time window, the optimized pulsed control
often leads to a higher degree of coherence than the control by a smooth single
Gaussian pulse. The reduction of dephasing is considerable already for 2-3
pulses.Comment: Final version (moderate changes
Colloidal nanophotonics: The emerging technology platform
Dating back to decades or even centuries ago, colloidal nanophotonics during the last ten years rapidly extends towards light emitting devices, lasers, sensors and photonic circuitry to manifest itself as an emerging technology platform rather than an entirely academic research field. ©2016 Optical Society of America
Electron-Phonon Dynamics in an Ensemble of Nearly Isolated Nanoparticles
We investigate the electron population dynamics in an ensemble of nearly
isolated insulating nanoparticles, each nanoparticle modeled as an electronic
two-level system coupled to a single vibrational mode. We find that at short
times the ensemble-averaged excited-state population oscillates but has a
decaying envelope. At long times, the oscillations become purely sinusoidal
about a ``plateau'' population, with a frequency determined by the
electron-phonon interaction strength, and with an envelope that decays
algebraically as t^-{1/2} We use this theory to predict electron-phonon
dynamics in an ensemble of Y_2 O_3 nanoparticles.Comment: 11 pages, 3 figure
Full configuration interaction approach to the few-electron problem in artificial atoms
We present a new high-performance configuration interaction code optimally
designed for the calculation of the lowest energy eigenstates of a few
electrons in semiconductor quantum dots (also called artificial atoms) in the
strong interaction regime. The implementation relies on a single-particle
representation, but it is independent of the choice of the single-particle
basis and, therefore, of the details of the device and configuration of
external fields. Assuming no truncation of the Fock space of Slater
determinants generated from the chosen single-particle basis, the code may
tackle regimes where Coulomb interaction very effectively mixes many
determinants. Typical strongly correlated systems lead to very large
diagonalization problems; in our implementation, the secular equation is
reduced to its minimal rank by exploiting the symmetry of the effective-mass
interacting Hamiltonian, including square total spin. The resulting Hamiltonian
is diagonalized via parallel implementation of the Lanczos algorithm. The code
gives access to both wave functions and energies of first excited states.
Excellent code scalability in a parallel environment is demonstrated; accuracy
is tested for the case of up to eight electrons confined in a two-dimensional
harmonic trap as the density is progressively diluted and correlation becomes
dominant. Comparison with previous Quantum Monte Carlo simulations in the
Wigner regime demonstrates power and flexibility of the method.Comment: RevTeX 4.0, 18 pages, 6 tables, 9 postscript b/w figures. Final
version with new material. Section 6 on the excitation spectrum has been
added. Some material has been moved to two appendices, which appear in the
EPAPS web depository in the published versio
A Large Blue Shift of the Biexciton State in Tellurium Doped CdSe Colloidal Quantum Dots
The exciton-exciton interaction energy of Tellurium doped CdSe colloidal
quantum dots is experimentally investigated. The dots exhibit a strong Coulomb
repulsion between the two excitons, which results in a huge measured biexciton
blue shift of up to 300 meV. Such a strong Coulomb repulsion implies a very
narrow hole wave function localized around the defect, which is manifested by a
large Stokes shift. Moreover, we show that the biexciton blue shift increases
linearly with the Stokes shift. This result is highly relevant for the use of
colloidal QDs as optical gain media, where a large biexciton blue shift is
required to obtain gain in the single exciton regime.Comment: 9 pages, 4 figure
Electron microscopic and optical investigations of the indium distribution GaAs capped InxGa1-xAs islands
Results from a structural and optical analysis of buried InxGa1-xAs islands carried out after the process of GaAs overgrowth are presented. It is found that during the growth process, the indium concentration profile changes and the thickness of the wetting layer emanating from a Stranski-Krastanow growth mode grows significantly. Quantum dots are formed due to strong gradients in the indium concentration, which is demonstrated by photoluminescence and excitation spectroscopy of the buried InxGa1-xAs islands. (C) 1997 American Institute of Physics
- …