84 research outputs found
Recommended from our members
An integrated resource and biological growth model for estimating algal biomass production with geographic resolution
textThis thesis describes a geographically- and temporally-resolved, integrated biological and engineering model that estimates algal biomass and lipid production under resource-limited conditions with hourly and county resolution. Four primary resources are considered in this model: sunlight, carbon dioxide, water, and land. The variation in quantity and distribution of these resources affects algae growth, and is integrated into the analysis using a Monod model of algae growth, solar insolation data, and published values for water, carbon dioxide, and land availability. Finally, lipid production is calculated by assuming oil content based on dry weight of the biomass. The model accommodates a range of growth and production scenarios, including water recycling, co-location with wastewater treatment plants and coal-fired generators, and photobioreactor type (open pond or tubular), among others. Results for every county in Texas indicate that between 86 million and 2.2 billion gallons of lipids per year can be produced statewide for the various growth scenarios. The analysis suggests that algal biomass and lipid production does indeed vary geographically and temporally across Texas. Overall, most counties are water-limited for algae production, not sunlight or carbon dioxide-limited. However, there are many nuances in biomass and lipid production by county. Counties in west Texas are typically not solar- or land-limited, but are constrained by either water or carbon dioxide resources. Consequently, counties in east Texas are limited by either water, or land (depending on the fraction of water recycling). Varying carbon dioxide concentration results in higher growth rates, but not always increased biomass and lipid production because of limitations of other resources in each county.Mechanical EngineeringPublic Affair
In Vivo Delivery of Nitric Oxide-Sensing, Single-Walled Carbon Nanotubes
Detection of nitric oxide (NO) in vivo by single-walled carbon nanotubes (SWNT) is based on the fluorescent properties of SWNT and the ability of NO to quench the fluorescence signal. Alterations of the signal can be utilized to detect a small molecule in vivo that has not previously been possible by other assay techniques. The protocols described here explain the techniques used to prepare NO-detecting SWNTs and to administer them to mice by both intravenous and subcutaneous routes. These techniques can also be utilized with other SWNT sensors as well as non-SWNT sensorNational Institutes of Health (T32 Training Grant in Environmental Toxicology ES007020
Quantitative Tissue Spectroscopy of Near Infrared Fluorescent Nanosensor Implants
Implantable, near infrared (nIR) fluorescent nanosensors are advantageous for in vivo monitoring of biological analytes since they can be rendered selective for particular target molecule while utilizing their unique optical properties and the nIR tissue transparency window for information transfer without an internal power source or telemetry. However, basic questions remain regarding the optimal encapsulation platform, geometrical properties, and concentration ranges required for
effective signal to noise ratio through biological tissue. In this work, we systematically explore these variables quantitatively to optimize the performance of such optical nanosensors for biomedical applications. We investigate both alginate and polyethylene glycol (PEG) as model
hydrogel systems, encapsulating d(GT)[subscript 15] ssDNA-wrapped single walled carbon nanotubes (SWNT) as model fluorescent nanoparticle sensors, responsive to riboflavin. Hydrogel sensors implanted 0.5 mm into thick tissue samples cause 50% reduction of initial fluorescence intensity,
allowing an optical detection limit of 5.4 mm and 5.1 mm depth in tissue for alginate and PEG gels, respectively, at a SWNT concentration of 10 mg Lâ1, and 785 nm laser excitation of 80 mW and 30 s exposure. These findings are supported with in vivo nIR fluorescent imaging of SWNT
hydrogels implanted subcutaneously in mice. For the case of SWNT, we find that the alginate system is preferable in terms of emission intensity, sensor response, rheological properties, and shelf life.National Institutes of Health (U.S.) (T32 Training Grant in Environmental Toxicology ES007020)National Cancer Institute (U.S.) (Grant P01 CA26731)National Institute of Environmental Health Sciences (Grant P30 ES002109)Arnold and Mabel Beckman Foundation (Young Investigator Award)National Science Foundation (U.S.) (Presidential Early Career Award for Scientists and Engineers)MIT-Technion FellowshipSamsung Scholarship FoundationSanofi Aventis (Firm) (Biomedical Innovation Grant
Arizona\u27s Vulnerable Populations
Arizonaâs vulnerable populations are struggling on a daily basis but usually do so in silence, undetected by traditional radar and rankings, often unaware themselves of their high risk for being pushed or pulled into a full crisis. Ineligible for financial assistance under strict eligibility guidelines, they donât qualify as poor because vulnerable populations are not yet in full crisis. To be clear, this report is not about the âpoor,â at least not in the limited sense of the word. It is about our underemployed wage earners, our single-parent households, our deployed or returning military members, our under-educated and unskilled workforce, our debt-ridden neighbors, our uninsured friends, our family members with no savings for an emergency, much less retirement
In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes
Single-walled carbon nanotubes are particularly attractive for biomedical applications, because they exhibit a fluorescent signal in a spectral region where there is minimal interference from biological media. Although single-walled carbon nanotubes have been used as highly sensitive detectors for various compounds, their use as in vivo biomarkers requires the simultaneous optimization of various parameters, including biocompatibility, molecular recognition, high fluorescence quantum efficiency and signal transduction. Here we show that a polyethylene glycol ligated copolymer stabilizes near-infrared-fluorescent single-walled carbon nanotubes sensors in solution, enabling intravenous injection into mice and the selective detection of local nitric oxide concentration with a detection limit of 1 ”M. The half-life for liver retention is 4 h, with sensors clearing the lungs within 2 h after injection, thus avoiding a dominant route of in vivo nanotoxicology. After localization within the liver, it is possible to follow the transient inflammation using nitric oxide as a marker and signalling molecule. To this end, we also report a spatial-spectral imaging algorithm to deconvolute fluorescence intensity and spatial information from measurements. Finally, we demonstrate that alginate-encapsulated single-walled carbon nanotubes can function as implantable inflammation sensors for nitric oxide detection, with no intrinsic immune reactivity or other adverse response for more than 400 days.National Institutes of Health (U.S.) (T32 Training Grant in Environmental Toxicology ES007020)National Cancer Institute (U.S.) (Grant P01 CA26731)National Institute of Environmental Health Sciences (Grant P30 ES002109)Arnold and Mabel Beckman Foundation (Young Investigator Award)National Science Foundation (U.S.). Presidential Early Career Award for Scientists and EngineersScientific and Technological Research Council of Turkey (TUBITAK 2211 Research Fellowship Programme)Scientific and Technological Research Council of Turkey (TUBITAK 2214 Research Fellowship Programme)Middle East Technical University. Faculty Development ProgrammeSanofi Aventis (Firm) (Biomedical Innovation Grant
A framework and methodology for reporting geographically and temporally resolved solar data: A case study of Texas
This paper presents a framework and methodology for reporting measured solar
radiation data. Geographically and temporally resolved solar data have been calculated
for all 254 counties in Texas using geospatial interpolation of data from 24
existing terrestrial measurement locations. Hourly global, direct, and diffuse horizontal
radiation data have been obtained from 15 measurement sites at the Texas
Solar Radiation Database, a project at The University of Texas at Austin, and from
9 sites at the National Solar Radiation Database. Average radiation fluxes and peak
insolation have been calculated using daylight hours in addition to the total energy
in kW h/m2 day. The methodology presented in this paper provides solar insolation
data in a convenient format for engineers, scientists, policy-makers, homeowners,
and consumers to assess the potential of solar energy at the county resolution. This
methodology enables informed decisions about the economic viability of solar installations
at particular locations and with useful diurnal and seasonal fidelity.
These results are presented in a series of maps, figures, and tables included in this
paper.Mechanical Engineerin
A unit commitment study of the application of energy storage toward the integration of renewable generation
To examine the potential benefits of energy storage in the electric grid, a
generalized unit commitment model of thermal generating units and energy storage
facilities is developed. Three different storage scenarios were testedâtwo without
limits to total storage assignment and one with a constrained maximum storage
portfolio. Given a generation fleet based on the City of Austinâs renewable energy
deployment plans, results from the unlimited energy storage deployment scenarios
studied show that if capital costs are ignored, large quantities of seasonal storage
are preferred. This operational approach enables storage of plentiful wind
generation during winter months that can then be dispatched during high cost peak
periods in the summer. These two scenarios yielded 94 million in
yearly operational cost savings but would cost hundreds of billions to implement.
Conversely, yearly cost reductions of $40 million can be achieved with one
compressed air energy storage facility and a small set of electrochemical storage
devices totaling 13GWh of capacity. Similarly sized storage fleets with capital
costs, service lifetimes, and financing consistent with these operational cost savings
can yield significant operational benefit by avoiding dispatch of expensive peaking
generators and improving utilization of renewable generation throughout the year.
Further study using a modified unit commitment model can help to clarify optimal
storage portfolios, reveal appropriate market participation approaches, and
determine the optimal siting of storage within the grid.Mechanical Engineerin
- âŠ