13 research outputs found

    The amyloid precursor protein derivative, APP96-110, is efficacious following intravenous administration after traumatic brain injury

    Get PDF
    Following traumatic brain injury (TBI) neurological damage is ongoing through a complex cascade of primary and secondary injury events in the ensuing minutes, days and weeks. The delayed nature of secondary injury provides a valuable window of opportunity to limit the consequences with a timely treatment. Recently, the amyloid precursor protein (APP) and its derivative APP96-110 have shown encouraging neuroprotective activity following TBI following an intracerebroventricular administration. Nevertheless, its broader clinical utility would be enhanced by an intravenous (IV) administration. This study assessed the efficacy of IV APP96-110, where a dose-response for a single dose of 0.005mg/kg- 0.5mg/kg APP96-110 at either 30 minutes or 5 hours following moderate-severe diffuse impact-acceleration injury was performed. Male Sprague-Dawley rats were assessed daily for 3 or 7 days on the rotarod to examine motor outcome, with a separate cohort of animals utilised for immunohistochemistry analysis 3 days post-TBI to assess axonal injury and neuroinflammation. Animals treated with 0.05mg/kg or 0.5mg/kg APP96-110 after 30 minutes demonstrated significant improvements in motor outcome. This was accompanied by a reduction in axonal injury and neuroinflammation in the corpus callosum at 3 days post-TBI, whereas 0.005mg/kg had no effect. In contrast, treatment with 0.005m/kg or 0.5mg/kg APP96-110 at 5 hours post-TBI demonstrated significant improvements in motor outcome over 3 days, which was accompanied by a reduction in axonal injury in the corpus callosum. This demonstrates that APP96-110 remains efficacious for up to 5 hours post-TBI when administered IV, and supports its development as a novel therapeutic compound following TBI.Stephanie L. Plummer, Frances Corrigan, Emma Thornton, Joshua A. Woenig, Robert Vink, Roberto Cappai, Corinna Van Den Heuve

    Targeted resequencing identifies genes with recurrent variation in cerebral palsy

    Get PDF
    A growing body of evidence points to a considerable and heterogeneous genetic aetiology of cerebral palsy (CP). To identify recurrently variant CP genes, we designed a custom gene panel of 112 candidate genes. We tested 366 clinically unselected singleton cases with CP, including 271 cases not previously examined using next-generation sequencing technologies. Overall, 5.2% of the naïve cases (14/271) harboured a genetic variant of clinical significance in a known disease gene, with a further 4.8% of individuals (13/271) having a variant in a candidate gene classified as intolerant to variation. In the aggregate cohort of individuals from this study and our previous genomic investigations, six recurrently hit genes contributed at least 4% of disease burden to CP: COL4A1, TUBA1A, AGAP1, L1CAM, MAOB and KIF1A. Significance of Rare VAriants (SORVA) burden analysis identified four genes with a genome-wide significant burden of variants, AGAP1, ERLIN1, ZDHHC9 and PROC, of which we functionally assessed AGAP1 using a zebrafish model. Our investigations reinforce that CP is a heterogeneous neurodevelopmental disorder with known as well as novel genetic determinants.C. L. van Eyk, M. A. Corbett, M. S. B. Frank, D. L. Webber, M. Newman, J. G. Berry, K. Harper, B. P. Haines, G. McMichael, J. A. Woenig, A. H. MacLennan, and J. Gec

    Morphometric evaluation of duodenal biopsies in celiac disease

    No full text
    Objectives: The Marsh classification is a semiquantitative method for the diagnosis and monitoring of changes in duodenal biopsies in celiac disease. We have explored the possibility that quantitative changes in villous area and crypt length (morphometry) may provide better information on changes in duodenal morphology, particularly after the introduction of a gluten-free diet. Methods: We measured villous height, apical and basal villous widths, and crypt length in 57 adults with celiac disease and 83 control subjects. Villous area was calculated as a trapezoid approximation. Serial changes in villous area and crypt length were determined at regular intervals for up to 4 years after the introduction of a gluten-free diet. Morphometric changes were also correlated with Marsh grade, self-reported adherence to a gluten-free diet, and changes in celiac serology. Results: The gluten-free diet resulted in a progressive increase in villous area and a progressive decrease in crypt length. Morphometric improvement reached a plateau after 6 – 12 months with mean villous area attaining a value approximately half that of control subjects. Morphometric data were more sensitive than Marsh grade. Improvement in morphometric indices was significantly associated with the disappearance of anti-endomysial IgA antibody but not with dietary compliance. Conclusions: Morphometry is a sensitive way to document changes in duodenal biopsies in celiac disease. In adults treated with a gluten-free diet, it is uncommon for villous area to return to values observed in control subjects, but morphometric improvement is associated with the disappearance of anti-endomysial IgA antibody.Adrian G. Cummins, Basile G. Alexander, Adrian Chung, Edward Teo, Josh A. Woenig, John B.J. Field, Fiona M. Thompson, and Ian C. Roberts-Thomso

    The Role of Neurogenic Inflammation in Blood-Brain Barrier Disruption and Development of Cerebral Oedema Following Acute Central Nervous System (CNS) Injury

    No full text
    Acute central nervous system (CNS) injury, encompassing traumatic brain injury (TBI) and stroke, accounts for a significant burden of morbidity and mortality worldwide, largely attributable to the development of cerebral oedema and elevated intracranial pressure (ICP). Despite this, clinical treatments are limited and new therapies are urgently required to improve patient outcomes and survival. Originally characterised in peripheral tissues, such as the skin and lungs as a neurally-elicited inflammatory process that contributes to increased microvascular permeability and tissue swelling, neurogenic inflammation has now been described in acute injury to the brain where it may play a key role in the secondary injury cascades that evolve following both TBI and stroke. In particular, release of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) appear to be critically involved. In particular, increased SP expression is observed in perivascular tissue following acute CNS injury, with the magnitude of SP release being related to both the frequency and degree of the insult. SP release is associated with profound blood-brain barrier disruption and the subsequent development of vasogenic oedema, as well as neuronal injury and poor functional outcomes. Inhibition of SP through use of a neurokinin 1 (NK1) antagonist is highly beneficial following both TBI and ischaemic stroke in pre-clinical models. The role of CGRP is more unclear, especially with respect to TBI, with both elevations and reductions in CGRP levels reported following trauma. However, a beneficial role has been delineated in stroke, given its potent vasodilatory effects. Thus, modulating neuropeptides represents a novel therapeutic target in the treatment of cerebral oedema following acute CNS injury

    Increased STAG2 dosage defines a novel cohesinopathy with intellectual disability and behavioral problems

    No full text
    First published online: October 6, 2015Next generation genomic technologies have made a significant contribution to the understanding of the genetic architecture of human neurodevelopmental disorders. Copy number variants (CNVs) play an important role in the genetics of intellectual disability (ID). For many CNVs, and copy number gains in particular, the responsible dosage-sensitive gene(s) have been hard to identify. We have collected 18 different interstitial microduplications and 1 microtriplication of Xq25. There were 15 affected individuals from 6 different families and 13 singleton cases, 28 affected males in total. The critical overlapping region involved the STAG2 gene, which codes for a subunit of the cohesin complex that regulates cohesion of sister chromatids and gene transcription. We demonstrate that STAG2 is the dosage-sensitive gene within these CNVs, as gains of STAG2 mRNA and protein dysregulate disease-relevant neuronal gene networks in cells derived from affected individuals. We also show that STAG2 gains result in increased expression of OPHN1, a known X-chromosome ID gene. Overall, we define a novel cohesinopathy due to copy number gain of Xq25 and STAG2 in particular.Raman Kumar ... Mark A. Corbett ...Alison Gardner, Joshua A.Woenig, Lachlan A. Jolly ... Chuan Tan ... Elizabeth M. Thompson, Eric Haan... Jozef Gecz et al

    THOC2 mutations implicate mRNA-export pathway in X-linked intellectual disability

    No full text
    Export of mRNA from the cell nucleus to the cytoplasm is essential for protein synthesis, a process vital to all living eukaryotic cells. mRNA export is highly conserved and ubiquitous. Mutations affecting mRNA and mRNA processing or export factors, which cause aberrant retention of mRNAs in the nucleus, are thus emerging as contributors to an important class of human genetic disorders. Here, we report that variants in THOC2, which encodes a subunit of the highly conserved TREX mRNA-export complex, cause syndromic intellectual disability (ID). Affected individuals presented with variable degrees of ID and commonly observed features included speech delay, elevated BMI, short stature, seizure disorders, gait disturbance, and tremors. X chromosome exome sequencing revealed four missense variants in THOC2 in four families, including family MRX12, first ascertained in 1971. We show that two variants lead to decreased stability of THOC2 and its TREX-complex partners in cells derived from the affected individuals. Protein structural modeling showed that the altered amino acids are located in the RNA-binding domains of two complex THOC2 structures, potentially representing two different intermediate RNA-binding states of THOC2 during RNA transport. Our results show that disturbance of the canonical molecular pathway of mRNA export is compatible with life but results in altered neuronal development with other comorbidities.Raman Kumar, Mark A. Corbett, Bregje W.M. van Bon, Joshua A. Woenig, Lloyd Weir, Evelyn Douglas, Kathryn L. Friend, Alison Gardner, Marie Shaw, Lachlan A. Jolly, Chuan Tan, Matthew F. Hunter, Anna Hackett, Michael Field, Elizabeth E. Palmer, Melanie Leffler, Carolyn Rogers, Jackie Boyle, Melanie Bienek, Corinna Jensen, Griet Van Buggenhout, Hilde Van Esch, Katrin Hoffmann, Martine Raynaud, Huiying Zhao, Robin Reed, Hao Hu, Stefan A. Haas, and Eric Haa

    Snowboarder's talus fractures experimentally produced by eversion and dorsiflexion

    No full text
    We report siblings of consanguineous parents with an infantile-onset neurodegenerative disorder manifesting a predominant sensorimotor axonal neuropathy, optic atrophy and cognitive deficit. We used homozygosity mapping to identify an ∼12-Mbp interval identical by descent (IBD) between the affected individuals on chromosome 3q13.13-21.1 with an LOD score of 2.31. We combined family-based whole-exome and whole-genome sequencing of parents and affected siblings and, after filtering of likely non-pathogenic variants, identified a unique missense variant in syntaxin-binding protein 5-like (STXBP5L c.3127G>A, p.Val1043Ile [CCDS43137.1]) in the IBD interval. Considering other modes of inheritance, we also found compound heterozygous variants in FMNL3 (c.114G>C, p.Phe38Leu and c.1372T>G, p.Ile458Leu [CCDS44874.1]) located on chromosome 12. STXBP5L (or Tomosyn-2) is expressed in the central and peripheral nervous system and is known to inhibit neurotransmitter release through inhibition of the formation of the SNARE complexes between synaptic vesicles and the plasma membrane. FMNL3 is expressed more widely and is a formin family protein that is involved in the regulation of cell morphology and cytoskeletal organization. The STXBP5L p.Val1043Ile variant enhanced inhibition of exocytosis in comparison with wild-type (WT) STXBP5L. Furthermore, WT STXBP5L, but not variant STXBP5L, promoted axonal outgrowth in manipulated mouse primary hippocampal neurons. However, the FMNL3 p.Phe38Leu and p.Ile458Leu variants showed minimal effects in these cells. Collectively, our clinical, genetic and molecular data suggest that the IBD variant in STXBP5L is the likely cause of the disorder.Raman Kumar, Mark A. Corbett, Nicholas J. C. Smith, Lachlan A. Jolly, Chuan Tan, Damien J. Keating, Michael D. Duffield, Toshihiko Utsumi, Koko Moriya, Katherine R. Smith, Alexander Hoischen, Kim Abbott, Michael G. Harbord, Alison G. Compton, Joshua A. Woenig, Peer Arts, Michael Kwint, Nienke Wieskamp, Sabine Gijsen, Joris A. Veltman, Melanie Bahlo, Joseph G. Gleeson, Eric Haan, and Jozef Gec

    THOC2 Mutations Implicate mRNA-Export Pathway in X-Linked Intellectual Disability

    Get PDF
    Item does not contain fulltextExport of mRNA from the cell nucleus to the cytoplasm is essential for protein synthesis, a process vital to all living eukaryotic cells. mRNA export is highly conserved and ubiquitous. Mutations affecting mRNA and mRNA processing or export factors, which cause aberrant retention of mRNAs in the nucleus, are thus emerging as contributors to an important class of human genetic disorders. Here, we report that variants in THOC2, which encodes a subunit of the highly conserved TREX mRNA-export complex, cause syndromic intellectual disability (ID). Affected individuals presented with variable degrees of ID and commonly observed features included speech delay, elevated BMI, short stature, seizure disorders, gait disturbance, and tremors. X chromosome exome sequencing revealed four missense variants in THOC2 in four families, including family MRX12, first ascertained in 1971. We show that two variants lead to decreased stability of THOC2 and its TREX-complex partners in cells derived from the affected individuals. Protein structural modeling showed that the altered amino acids are located in the RNA-binding domains of two complex THOC2 structures, potentially representing two different intermediate RNA-binding states of THOC2 during RNA transport. Our results show that disturbance of the canonical molecular pathway of mRNA export is compatible with life but results in altered neuronal development with other comorbidities

    Increased STAG2 dosage defines a novel cohesinopathy with intellectual disability and behavioral problems

    No full text
    Item does not contain fulltextNext generation genomic technologies have made a significant contribution to the understanding of the genetic architecture of human neurodevelopmental disorders. Copy number variants (CNVs) play an important role in the genetics of intellectual disability (ID). For many CNVs, and copy number gains in particular, the responsible dosage-sensitive gene(s) have been hard to identify. We have collected 18 different interstitial microduplications and 1 microtriplication of Xq25. There were 15 affected individuals from 6 different families and 13 singleton cases, 28 affected males in total. The critical overlapping region involved the STAG2 gene, which codes for a subunit of the cohesin complex that regulates cohesion of sister chromatids and gene transcription. We demonstrate that STAG2 is the dosage-sensitive gene within these CNVs, as gains of STAG2 mRNA and protein dysregulate disease-relevant neuronal gene networks in cells derived from affected individuals. We also show that STAG2 gains result in increased expression of OPHN1, a known X-chromosome ID gene. Overall, we define a novel cohesinopathy due to copy number gain of Xq25 and STAG2 in particular

    Wnt blockade with Dickkopf reduces intestinal crypt fission and intestinal growth in infant rats

    No full text
    ObjectivesIntestinal crypt fission peaks during infancy. In human and experimental familial polyposis coli, increased crypt fission is due to activation of Wnt/β-catenin signalling, but the molecular basis of crypt fission during intestinal growth has not been examined. The aim of this project was to investigate whether crypt fission and intestinal growth are affected by experimental blockade of the Wnt/β-catenin signalling pathway.MethodsHooded Wistar rats were given either the Wnt inhibitor, dickkopf (30 and 100 ng), daily or vehicle control intraperitoneally from days 11 to 15 and were killed at day 16. Intestinal morphometry was used to measure villous area, crypt area, percentage of crypt fission, and crypt mitotic count. Intestinal stem cells were assessed by expression of real time-polymerase chain reaction for Lgr5 (a stem cell marker), and the number of β-catenin-expressing crypts by immunostaining was determined after 100-ng dickkopf treatment.ResultsDickkopf at 30 and 100 ng/day reduced villous area to 71% (P = 0.013) and 29% (P ConclusionsWe conclude that intestinal crypt fission during infancy is mediated by Wnt signalling. It is possible that local treatment with Wnt agonists could be used to increase intestinal growth.Fauser, Jane K.; Donato, Rino P.; Woenig, Joshua A.; Proctor, Simon J.; Trotta, Andrew P.; Grover, Phulwinder K.; Howarth, Gordon S.; Penttila, Irmeli A.; Cummins, Adrian G
    corecore