48 research outputs found

    Amélioration des estimations quantitatives des précipitations à hautes résolutions (comparaison de deux techniques combinant les observations et application à la vérification spatiale des modèles météorologiques)

    Get PDF
    Ces dernières années, de nombreux efforts ont été entrepris pour mieux comprendre les phénomènes précipitants parfois à l origine de crues de cours d eau et d inondations ravageuses. Courant 2009, un consortium auvergnat a été mis en place pour notamment surveiller et prévoir ces événements. Les travaux menés dans cette thèse visent d une part à améliorer les estimations quantitatives des précipitations (QPE) et d autre part à vérifier les prévisions issues de modèles numériques sur de petites zones d étude telles qu une agglomération. L observation des précipitations peut être réalisée à l aide soit d un pluviomètre qui fournit une mesure directe et précise de la quantité de pluie tombée au sol mais ne renseigne pas sur la variabilité spatiale des pluies soit d'un RADAR météorologique qui donne une représentation détaillée de la structure spatiale des précipitations mais dont les estimations sont sujettes à diverses erreurs d autant plus prononcées en régions montagneuses. Le premier défit de cette thèse a été de trouver la meilleure façon de combiner ces deux informations complémentaires. Deux techniques géostatistiques ont été sélectionnées pour obtenir la meilleur QPE : le krigeage avec dérive externe (KED) et la fusion conditionnée (MERG). Les performances de ces deux méthodes ont été comparées au travers de deux domaines d étude qui présentent des résolutions spatio-temporelles différentes. La seconde partie de cette thèse est consacrée à la mise en place d une méthodologie fiable permettant de comparer spatialement les champs de QPE alors reconstruits et les prévisions quantitatives des précipitations (QPF). L effort fut porté sur le modèle Weather Research et Forcasting (WRF). Une étude préliminaire a été réalisée pour tester les capacités du modèle et plus particulièrement des schémas de microphysique à reproduire la pluie. Cette étude assure ainsi l obtention de prévisions réalistes pour une application sur des cas réels. L appréciation de la qualité des QPF s est focalisée sur la quantification spatiale des erreurs de prévision en termes de structure, d intensité et de localisation des systèmes précipitants (SAL : Wernli et al. 2008, 2009).In the last decades, many efforts were made to better understand the origins of rain that sometimes lead to rivers runoff or devastating floods. In 2009, a consortium took place in Auvergne in order to observe and predict these events. These works were focused on the improvement of quantitative precipitation estimations (QPE) and the verification of numerical weather models over small areas such as urban environment. Rainfall measurement could be operated either by rain gauges which provides direct and precise rainfall estimations but unfortunately cannot capture the spatial variability or by using weather RADAR which provides a detailed spatial representation of precipitation but estimates are derived indirectly and are subject to a combination of errors which are most pronounced over complex terrain. The main issue of these works was to find the best way to combine both observational systems which are complementary as well. In order to obtain the more truthful fields of QPE, two geostatistical techniques were selected: the kriging with external drift (KED) and the conditional merging (MERG). The performances of these two methods have been experienced on two catchments with different spatial and temporal resolutions. The second part of these works is focused on a reliable method for QPE comparison and quantitative precipitation forecast (QPF). The main effort was focused on the Weather Research and Forecasting (WRF) model. A preliminary study was made to check the performances of the microphysics schemes of the model to ensure realistic forecasts for an application on real cases. The spatial verification of the model set up contains three distinct components that consider aspects of the structure, amplitude and location of the precipitation field (SAL : Wernli et al. 2008, 2009).CLERMONT FD-Bib.électronique (631139902) / SudocSudocFranceF

    Development of a Detailed Microphysics Cirrus Model Tracking Aerosol Particles' Histories for Interpretation of the Recent INCA Campaign

    Get PDF
    International audienceCirrus clouds play an important role in the earth's energy balance. To quantify their impact, information is needed on their microstructure and more precisely on the number and size of the ice crystals. With the anthropogenic activity, more and more aerosol particles and water vapor are released even at the altitude where cirrus clouds are formed. Cirrus clouds formed in a polluted air mass may have different microphysical properties and, therefore, a different impact on the climate system via the changed radiative properties compared to background cirrus clouds. To study this aspect, the European project called the Interhemispheric Differences in Cirrus Properties due to Anthropogenic Emissions (INCA) measured the microphysical properties of cirrus clouds together with the physical and chemicals properties of aerosol particles in clean air (at Punta Arenas, Chile) and polluted air (at Prestwick, Scotland). The goal of the present work was to develop a detailed microphysics model for cirrus clouds for the interpretation and the generalization of the INCA observations. This model considers moist aerosol particles through the Externally Mixed (EXMIX) model, so that the chemical composition of solution droplets can be followed. Ice crystal formation is described through homogeneous or heterogeneous nucleation. The crystals then grow by deposition. With this model, the interactions between the microphysical processes, simulated ice crystal concentrations, and dimensional distributions of the INCA observations were studied, and explanations were provided for the observed differences between background and polluted cirrus clouds

    The chemistry of sulfur and nitrogen species in a fog system A multiphase approach

    Get PDF
    Concentration and phase distribution of sulfur and nitrogen species during a particular fog episode in the Po Valley are experimentally described in this paper. Chemical measurements were carried out simultaneously at different heights within the fog layer, up to 50 m. Microphysical and meteorological parameters necessary for the description of the fog multiphase system were also concurrently measured as a function of height. The fog cycle (formation, evolution, dissipation) is described in terms of the total acidity of a unit volume of air containing gas species, interstitial aerosol particles and fog droplets. The fog system was not closed and input of acidic and basic components was observed during fog evolution. The driving force which determines the acidity of the fog multiphase atmospheric system was found to be the presence of NH 3 and its partitioning among the different phases. A strong decrease of fog water pH (from 5.6 down to 2.8) was observed during fog evolution and was attributed to a HNO 3 input to the system. These acidic and basic inputs are described in terms of a titration/back-titration process of the fog system. The SO 2 oxidation process in fog water was found to be of minor importance in determining the SO 4 = concentration within the fog system, due to both low SO 2 concentration and limited oxidant availability during the experiment. DOI: 10.1034/j.1600-0889.1992.t01-4-00005.

    Venting of gases by convective clouds

    No full text
    International audienceA two-dimensional dynamic model with spectral microphysics and a spectral treatment of aerosol particle and gas scavenging (DESCAM) was used to estimate the transport of gases from the marine boundary layer to the free troposphere by a mediumsized warm precipitating convective cloud. In the simulation, three gases were considered, covering a range of Henry's law constants: an inert tracer, SO2, and H202. SO 2 was also used as the inert tracer by artificially suppressing any interaction with the cloud drops. The horizontal and vertical fluxes, their vertical means and the transport across the cloud boundaries were studied. It was calculated that for SO2 as an inert tracer 37 kg, for SO2 as a scavenged gas 34 kg, and for H202 12 kg were transported from the marine boundary layer across cloud base to the free troposphere for an estimated three-dimensional cloud. This represents a depletion of the marine boundary layer in the vicinity of the cloud by about 60%. After about half an hour of cloud life time, however, only 75% of the SO2 and only 30% of the H202 transported aloft still existed in the cloudy air. These residual gases could eventually participate in a long range transport if the cloud would dissipate. The rest had been scavenged by the cloud

    Développement et évaluation d'un modèle tridimensionnel de nuage chaud à microphysique détaillée

    No full text
    CLERMONT FD-BCIU Sci.et Tech. (630142101) / SudocSudocFranceF

    Développement d'un modèle tridimensionnel à microphysique détaillée (Application à la simulation de cas de convection moyenne et profonde)

    No full text
    La représentation des nuages est une source importante d'incertitude dans les modèles à échelle synoptique ou globale. Pour l'améliorer, la solution retenue consiste à développer un modèle de nuage le plus réaliste possible, pour pouvoir ensuite le comparer avec des représentations plus simplifiées et détecter leurs éventuelles faiblesses. Ainsi, un modèle de nuages tridimensionnel (3D) et à microphysique détaillée a été developpé à partir du modèle dynamique 3D de Clark et Hall (1991) et du modèle microphysique DESCAM (DEtailed SCAvenging Model) de Flossmann et al. (1985) et cette thèse traite plus particulièrement de la prise en compte de la phase glace dans ce modèle. Le module de microphysique froide implémenté a été validé par comparaison avec des mesures aéroportées et au sol. Le modèle DESCAM 3D étant aussi conçu pour l'étude des interactions aérosol-nuage, il a ensuite été utilisé pour étudier l'impact de la pollution particulaire sur la phase glace et les précipitationsCLERMONT FD-BCIU Sci.et Tech. (630142101) / SudocSudocFranceF
    corecore