8 research outputs found

    Characteristics of normal human retinal pigment epithelium cells with extremes of autofluorescence or intracellular granule count

    Get PDF
    Background: Cells of the retinal pigment epithelium (RPE) accumulate different kinds of granules (lipofuscin, melanolipofuscin, melanosomes) within their cell bodies, with lipofuscin and melanolipofuscin being autofluorescent after blue light excitation. High amounts of lipofuscin granules within the RPE have been associated with the development of RPE cell death and age-related macular degeneration (AMD); however, this has not been confirmed in histology so far. Here, based on our previous dataset of RPE granule characteristics, we report the characteristics of RPE cells from human donor eyes that show either high or low numbers of intracellular granules or high or low autofluorescence (AF) intensities. Methods: RPE flatmounts of fifteen human donors were examined using high-resolution structured illumination microscopy (HR-SIM) and laser scanning microscopy (LSM). Autofluorescent granules were analyzed regarding AF phenotype and absolute number of granules. In addition, total AF intensity per cell and granule density (number of granules per cell area) were determined. For the final analysis, RPE cells with total granule number below 5th or above the 95th percentile, or a total AF intensity ± 1.5 standard deviations above or below the mean were included, and compared to the average RPE cell at the same location. Data are presented as mean ± standard deviation. Results: Within 420 RPE cells examined, 42 cells were further analyzed due to extremes regarding total granule numbers. In addition, 20 RPE cells had AF 1.5 standard deviations below, 28 RPE cells above the mean local AF intensity. Melanolipofuscin granules predominate in RPE cells with low granule content and low AF intensity. RPE cells with high granule content have nearly twice (1.8 times) as many granules as an average RPE cell. Conclusions: In normal eyes, outliers regarding autofluorescent granule load and AF intensity signals are rare among RPE cells, suggesting that granule deposition and subsequent AF follows intrinsic control mechanisms at a cellular level. The AF of a cell is related to the composition of intracellular granule types. Ongoing studies using AMD donor eyes will examine possible disease related changes in granule distribution and further put lipofuscin´s role in aging and AMD further into perspective

    High-resolution microscopy using structured illumination for age-dependent accumulation of autofluorescent granules in human retinal pigment epithelium

    No full text
    Die Technik der strukturierten Beleuchtungsmikroskopie (structured illumination microscopy, SIM) ist eine etablierte ultrastrukturelle Aufnahmemethode, die der hochauflösenden Visualisierung intrazellulärer Strukturen dient. In der Ophthalmologie findet diese Art der Bildgebung bisher wenig Anwendung. SIM ermöglicht die histologische Darstellung retinaler Strukturen, wie der Zellen des humanen retinalen Pigmentepithels (RPE). In den Zellen des RPE reichern sich Granula an, die für die Autofluoreszenz-Bildgebung von Bedeutung sind. Anhand der Morphologie und autofluoreszierenden Merkmale lassen sich grundsätzlich drei Granulatypen im RPE unterscheiden: Melanosomen (M), Melanolipofuszin (ML)- und Lipofuszin (L)-Granula. Die Anwendung der SIM ermöglicht die präzise Darstellung und Differenzierung dieser autofluoreszierenden Strukturen, sowie die Bestimmung ihrer Anzahl und Lokalisation. Ziel der Arbeit ist die Darstellung der im humanen RPE lokalisierten Granula mithilfe der SIM. Anhand der unterschiedlichen Autofluoreszenz (AF) der Granula können diese innerhalb des RPE-Zellkörpers klassifiziert, sowie deren Anzahl und Dichte analysiert werden. Diese Analyse wird in Altersgruppen und Retinalokalisationen differenziert. Zudem sind direkte Vergleiche zwischen der Histologie (SIM, ex vivo) und klinischen Aufnahmen (Fundusautofluoreszenz, in vivo) kaum existent. Durch Ermittlung der Gesamt-AF pro Zelle in Korrelation zu der intrazellulären Granuladichte und -verteilung soll eine neue Interpretationsebene ermöglicht werden. Diese Arbeit soll helfen anhand der gewonnenen Daten die Stoffwechselmechanismen der Retina und deren Einfluss auf die Fundusautofluoreszenz (FAF) besser verstehen zu können. Sie soll insbesondere dazu beitragen bestehende und neue klinische FAF-Bildgebungsverfahren zu validieren, die Diagnostik pathologischer Prozesse der Retina zu optimieren und sowohl eine möglichst frühe Erkennung als auch präzise Prognostik zu ermöglichen. Zudem sollen die Daten eine belastbare Basis darstellen, um die mit einem hohen Zeitaufwand verbundene manuelle Zellanalyse einer geschulten künstlichen Intelligenz zu überlassen. Damit könnte der Analyseprozess von Gewebeproben immens beschleunigt werden und in seiner Effizienz maximiert werden.Structured illumination microscopy (SIM) is an established ultrastructural imaging technique for high-resolution visualization of intracellular structures. So far, this type of imaging has not been used much in ophthalmology. SIM enables the histological visualization of retinal structures, such as the cells of the hu- man retinal pigment epithelium (RPE). Granules accumulate in the cells of the RPE, which are important for autofluorescence imaging. Basically, three types of granules in the RPE can be distinguished on the basis of the morphology and autofluorescent characteristics: Melanosomes (M), Melanolipofuscin (ML) granules and Lipofuscin (L) granules. The use of SIM enables the precise representation and differentiation of these autofluorescent structures, as well as the determination of their number and localization. The aim of this work is to visualize the granules localized in human RPE using SIM. Based on the different autofluorescence (AF) of the granules, they can be classified within the RPE cell body and their number and density can be analyzed. This analysis is differentiated into age groups and retinal localizations. In addition, direct comparisons between histology (SIM, ex vivo) and clinical images (fundus autofluorescence, in vivo) hardly exist. By determining the total AF per cell in correlation to the intracellular granule density and distribution, a new level of interpretation should be made possible. This work will help to understand the metabolic mechanisms of the retina and their influence on fundus autofluorescence (FAF). In particular, it should contribute to validating existing and new clinical FAF imaging methods, optimizing the diagnosis of pathological processes in the retina and enabling both early detection and precise prognosis. In addition, the data should provide a reliable basis for leaving the time-consuming manual cell analysis to a trained artificial intelligence. This could immensely accelerate the analysis process of tissue samples and maximize its efficiency

    NAB1 Is an RNA Binding Protein Involved in the Light-Regulated Differential Expression of the Light-Harvesting Antenna of Chlamydomonas reinhardtii

    No full text
    Photosynthetic organisms respond to changes in ambient light by modulating the size and composition of their light-harvesting complexes, which in the case of the green alga Chlamydomonas reinhardtii consists of >15 members of a large extended family of chlorophyll binding subunits. How their expression is coordinated is unclear. Here, we describe the analysis of an insertion mutant, state transitions mutant3 (stm3), which we show has increased levels of LHCBM subunits associated with the light-harvesting antenna of photosystem II. The mutated nuclear gene in stm3 encodes the RNA binding protein NAB1 (for putative nucleic acid binding protein). In vitro and in vivo RNA binding and protein expression studies have confirmed that NAB1 differentially binds to LHCBM mRNA in a subpolysomal high molecular weight RNA–protein complex. Binding of NAB1 stabilizes LHCBM mRNA at the preinitiation level via sequestration and thereby represses translation. The specificity and affinity of binding are determined by an RNA sequence motif similar to that used by the Xenopus laevis translation repressor FRGY2, which is conserved to varying degrees in the LHCBM gene family. We conclude from our results that NAB1 plays an important role in controlling the expression of the light-harvesting antenna of photosystem II at the posttranscriptional level. The similarity of NAB1 and FRGY2 of Xenopus implies the existence of similar RNA-masking systems in animals and plants

    The effects of webcams on German neonatal intensive care units - study protocol of a randomised crossover trial (Neo-CamCare)

    No full text
    Background: The separation of parents and their prematurely born children during care in a neonatal intensive care unit (NICU) can have far-reaching consequences for the well-being of the parents and also of the children. The aim of this study is to evaluate the use of webcams on NICUs and to conduct a systematic assessment of their possible effects on parents and clinical staff. In addition, it aims at determining the need for webcams in German NICUs and to identify possible barriers and moderators. The development and evaluation of practical guidance for the use of webcams will enable the comprehensive education of clinical staff and parents and, as a result, is intended to mitigate any potential undesirable consequences. Methods: The study will be based on a mixed methods approach including all groups concerned in the care. Qualitative data will be collected in interviews and focus groups and evaluated using content analysis. The collection of quantitative data will be based on written questionnaires and will aim to assess the status quo as regards the use of webcams on German NICUs and the effects on parents, physicians, and nursing staff. These effects will be assessed in a randomised cross-over design. Four NICUs will be involved in the study and, in total, the parents of 730 premature babies will be invited to take part in the study. The effects on the nursing staff, such as additional workload and interruptions in workflows, will be evaluated on the basis of observation data. Discussion: This study will be the largest multicentre study known to us that systematically evaluates the use of webcams in neonatal intensive care units. The effects of the implementation of webcams on both parents and care providers will be considered. The results provide evidence to decide whether to promote the use of webcams on NICUs or not and what to consider when implementing them
    corecore