1,341 research outputs found

    RAPTOR observations of delayed explosive activity in the high-redshift gamma-ray burst GRB 060206

    Full text link
    The RAPid Telescopes for Optical Response (RAPTOR) system at Los Alamos National Laboratory observed GRB 060206 starting 48.1 minutes after gamma-ray emission triggered the Burst Alert Telescope (BAT) on-board the Swift satellite. The afterglow light curve measured by RAPTOR shows a spectacular re-brightening by ~1 mag about 1 h after the trigger and peaks at R ~ 16.4 mag. Shortly after the onset of the explosive re-brightening the OT doubled its flux on a time-scale of about 4 minutes. The total R-band fluence received from GRB 060206 during this episode is 2.3e-9 erg/cm2. In the rest frame of the burst (z = 4.045) this yields an isotropic equivalent energy release of ~0.7e50 erg in just a narrow UV band 130 +/- 22 nm. We discuss the implications of RAPTOR observations for untriggered searches for fast optical transients and studies of GRB environments at high redshift.Comment: Submitted to ApJ Letter

    Differentiation of the facial-vestibulocochlear ganglionic complex in human embryos of developmental stages 13–15

    Get PDF
    A study was made on 18 embryos of developmental stages 13–15 (5th week). Serial sections made in horizontal, frontal, and sagittal planes were stained with routine histological methods and some of them were treated with silver. In embryos of stage 13, the otic vesicle is at the rhombomere 5, and close to the vesicle is the facial-vestibulocochlear ganglionic complex in which the geniculate, vestibular, and cochlear ganglion may be discerned. These ganglia are well demarcated in embryos of stage 14. In the last investigated stage (15th) the nerve fibres of the ganglia reach the common afferent tract

    Limits on I-band microvariability of the Galactic Bulge Miras

    Full text link
    We search for microvariability in a sample of 485 Mira variables with high quality I-band light curves from the second generation Optical Gravitational Lensing Experiment (OGLE-II). Rapid variations with amplitudes in the ~0.2-1.1 mag range lasting hours to days were discovered in Hipparcos data by de Laverny et al. (1998). Our search is primarily sensitive to events with time-scales of about 1 day, but retains a few percent efficiency (per object) for detecting unresolved microvariability events as short as 2 hours. We do not detect any candidate events. Assuming that the distribution of the event time profiles is identical to that from the Hipparcos light curves we derive the 95% confidence level upper limit of 0.038 per year per star for the rate of such events (1 per 26 years per average object of the ensemble). The high event rates of the order of 1 per year per star implied by the Hipparcos study in the H_P band are excluded with high confidence by the OGLE-II data in the I band. Our non-detection could still be explained by much redder spectral response of the I filter compared to the H_P band or by population differences between the bulge and the solar neighborhood. In any case, the OGLE-II I-band data provide the first limit on the rate of the postulated microvariability events in Mira stars and offer new quantitative constraints on their properties. Similar limits are obtained for other pulse shapes and a range of the assumed time-scales and size-frequency distributions.Comment: Accepted for publication in Ap

    Excitonic luminescence of the I2_2-intercalated HfS2_2

    Full text link
    Photoluminescence from bulk HfS2_2 grown by the chemical vapor transport (CVT) method is reported. A series of emission lines is apparent at low temperature in the energy range of 1.4 - 1.5 eV. Two groups of the observed excitonic transitions followed by their replicas involving acoustic and optical phonons are distinguished using classical intensity correlation analysis. The emission is attributed to the recombination of excitons bound to iodine (I2_2) molecules intercalated between layers of HfS2_2. The I2_2 molecules are introduced to the crystal during the growth as halogen transport agents in the CVT growth process. Their presence in the crystal is confirmed by secondary ion mass spectroscopy.Comment: 5 pages, 6 figure

    Decision level ensemble method for classifying multi-media data

    Get PDF
    In the digital era, the data, for a given analytical task, can be collected in different formats, such as text, images and audio etc. The data with multiple formats are called multimedia data. Integrating and fusing multimedia datasets has become a challenging task in machine learning and data mining. In this paper, we present heterogeneous ensemble method that combines multi-media datasets at the decision level. Our method consists of several components, including extracting the features from multimedia datasets that are not represented by features, modelling independently on each of multimedia datasets, selecting models based on their accuracy and diversity and building the ensemble at the decision level. Hence our method is called decision level ensemble method (DLEM). The method is tested on multimedia data and compared with other heterogeneous ensemble based methods. The results show that the DLEM outperformed these methods significantly

    Microlensing Event MOA-2007-BLG-400: Exhuming the Buried Signature of a Cool, Jovian-Mass Planet

    Full text link
    We report the detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb. The planet was detected in a high-magnification microlensing event (with peak magnification A_max = 628) in which the primary lens transited the source, resulting in a dramatic smoothing of the peak of the event. The angular extent of the region of perturbation due to the planet is significantly smaller than the angular size of the source, and as a result the planetary signature is also smoothed out by the finite source size. Thus the deviation from a single-lens fit is broad and relatively weak (~ few percent). Nevertheless, we demonstrate that the planetary nature of the deviation can be unambiguously ascertained from the gross features of the residuals, and detailed analysis yields a fairly precise planet/star mass ratio of q = 0.0026+/-0.0004, in accord with the large significance (\Delta\chi^2=1070) of the detection. The planet/star projected separation is subject to a strong close/wide degeneracy, leading to two indistinguishable solutions that differ in separation by a factor of ~8.5. Upper limits on flux from the lens constrain its mass to be M < 0.75 M_Sun (assuming it is a main-sequence star). A Bayesian analysis that includes all available observational constraints indicates a primary in the Galactic bulge with a mass of ~0.2-0.5 M_Sun and thus a planet mass of ~ 0.5-1.3 M_Jupiter. The separation and equilibrium temperature are ~0.6-1.1AU (~5.3-9.7AU) and ~103K (~34K) for the close (wide) solution. If the primary is a main-sequence star, follow-up observations would enable the detection of its light and so a measurement of its mass and distance.Comment: 30 pages, 6 figures, Submitted to Ap

    Diversity of vegetation dominated by selected grass species on coal-mine spoil heaps in terms of reclamation of post-industrial areas

    Get PDF
    Published by Polish Society of Ecological Engineering (PTIE). This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.12911/22998993/93870© 2018, Polish Society of Ecological Engineering (PTIE). Grasses have a considerable potential for the adaptation to various, often extreme, habitat conditions. The aim of the work was to present the vegetation diversity of the coal-mine spoil heaps with the dominant share of grasses and to identify the main factors responsible for this diversity in the aspect of post-industrial land reclamation. The communities differ in reference to the species preferences to light, moisture, soil fertility and reaction, which is reflected in the wide variety of microhabitats in the area. It was shown that the increase in the abundance of certain grass species, including Calamagrostis epigejos, Festuca rubra, Festuca arundinacea, Phragmites australis, has a significant negative impact on the species richness, species diversity and the uniformity of distribution of species of the plant community. Preliminary analyses revealed that on post-mining waste, the biomass production of the dominant species is negatively correlated with biodiversity. The knowledge about the biology and ecology of grass species, as well as on the assembly rules may be used in the reclamation of degraded areas. Gaining the knowledge about the vegetation diversity of the coal-mine spoil heaps with the dominant share of grasses can be useful in planning the reclamation works, taking into account natural processes, which leads to the creation of a permanent vegetation cover at a given site, protecting it against water or wind erosion. In the future these areas may provide a number of important ecosystem services.Published versio

    Cosmic Ray Extremely Distributed Observatory: a global network of detectors to probe contemporary physics mysteries

    Full text link
    In the past few years, cosmic-rays beyond the GZK cut-off (E>5×1019E > 5 \times 10^{19} eV) have been detected by leading collaborations such as Pierre Auger Observatory. Such observations raise many questions as to how such energies can be reached and what source can possibly produce them. Although at lower energies, mechanisms such as Fermi acceleration in supernovae front shocks seem to be favored, top-down scenarios have been proposed to explain the existence of ultra-high energy cosmic-rays: the decay of super-massive long-lived particles produced in the early Universe may yield to a flux of ultra-high energy photons. Such photons might be presently generating so called super-preshowers, an extended cosmic-ray shower with a spatial distribution that can be as wide as the Earth diameter. The Cosmic Ray Extremely Distributed Observatory (CREDO) mission is to find such events by means of a network of detectors spread around the globe. CREDO's strategy is to connect existing detectors and create a worldwide network of cosmic-ray observatories. Moreover, citizen-science constitutes an important pillar of our approach. By helping our algorithms to recognize detection patterns and by using smartphones as individual cosmic-ray detectors, non-scientists can participate in scientific discoveries and help unravel some of the deepest mysteries in physics.Comment: excited QCD Conference, CREDO Collaboration, 7 pages, 3 figure
    corecore