145 research outputs found

    Kualitas Hidup Pasien Diabetes Melitus Tipe 2 di Puskesmas Se Kota Kupang

    Full text link
    Diabetes Mellitus is well known as a chronic disease which can lead to a decrease in quality of life in all domains. The study aims to explore the diabetic type 2 patient\u27s quality of life and find out the factors affecting in type 2 diabetic mellitus patients. The cross-sectional study design is used that included 65 patient with type 2 diabetes mellitus, in 11 public health centers of Kupang City. Data were collected by using Short Form Survey (SF-36) that assessed 8-scale health profile. Independent sample t-test is used to analyze the correlation between the factors affecting and the quality of life. the study showed that the QoL of DM patients decreased in all 8- health profile including physical functioning, social functioning, mental health, general health, pain, change in the role due to physical problems and emotional problems. The Study also showed there was a relationship between gender, duration of suffering from Diabetes mellitus, and complications to the quality of life. Male perceived a better quality of life than female

    Experimental and Human Evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and heart failure

    Get PDF
    Background-Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants.Methods and Results-We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2-knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2-knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis-eQTL for LCN2 expression.Conclusions-Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure

    Measurement of Trilinear Gauge Couplings in e+ee^+ e^- Collisions at 161 GeV and 172 GeV

    Get PDF
    Trilinear gauge boson couplings are measured using data taken by DELPHI at 161~GeV and 172~GeV. Values for WWVWWV couplings (V=Z,γV=Z, \gamma) are determined from a study of the reactions \eeWW\ and \eeWev, using differential distributions from the WWWW final state in which one WW decays hadronically and the other leptonically, and total cross-section data from other channels. Limits are also derived on neutral ZVγZV\gamma couplings from an analysis of the reaction \eegi

    Search for neutral heavy leptons produced in ZZ decays

    Get PDF
    Weak isosinglet Neutral Heavy Leptons (νm) have been searched for using data collected by the DELPHI detector corresponding to 3.3 × 106 hadronic Z0 decays at LEP1. Four separate searches have been performed, for short-lived νm production giving monojet or acollinear jet topologies, and for long-lived νm giving detectable secondary vertices or calorimeter clusters. No indication of the existence of these particles has been found, leading to an upper limit for the branching ratio BR(Z0 → νmν̄) of about 1.3 × 10-6 at 95% confidence level for νm masses between 3.5 and 50 GeV/c2. Outside this range the limit weakens rapidly with the νm mass. The results are also interpreted in terms of limits for the single production of excited neutrinos. © Springer-Verlag 1997

    Uteroplacental Insufficiency and Lactational Environment Separately Influence Arterial Stiffness and Vascular Function in Adult Male Rats

    No full text
    C1 - Journal Articles RefereedEarly life environmental influences can have lifelong consequences for health, including the risk of cardiovascular disease. Uteroplacental insufficiency causes fetal undernutrition and impairs fetal growth. Previously we have shown that uteroplacental insufficiency is associated with impaired maternal mammary development, compromising postnatal growth leading to hypertension in male rat offspring. In this study we investigated the roles of prenatal and postnatal nutritional environments on endothelial and smooth muscle reactivity and passive wall stiffness of resistance arteries of male rat offspring. Fetal growth restriction was induced by maternal bilateral uterine vessel ligation (restricted) on day 18 of pregnancy. Control offspring were from mothers that had sham surgery (control) and another group from mothers with their litter size reduced (reduced; litter size reduced to 5 at birth, equivalent to the restricted group). On postnatal day 1, offspring (control, restricted, and reduced) were cross-fostered onto control or restricted mothers. At 6 months, mesenteric and femoral arteries were studied using wire and pressure myography. In restricted-on-restricted rats, wall stiffness was increased, and sensitivity to phenylephrine and relaxation evoked by endothelium-derived hyperpolarizing factor and sodium nitroprusside were impaired in mesenteric arteries. In femoral arteries, relaxation to sodium nitroprusside was reduced, whereas wall stiffness was unaltered. Cross-fostering restricted offspring onto control mothers alleviated deficits in vascular stiffness and reactivity. Control or reduced offspring who suckled a restricted mother had marked vascular stiffening. In conclusion, prenatal and early postnatal environments separately influence vascular function and stiffness. Furthermore, the early postnatal lactational environment is a determinant of later cardiovascular function

    Breastfeeding a small for gestational age infant, complicated by maternal gestational diabetes: a case report

    Get PDF
    BACKGROUND: Small for gestational age (SGA) infants are those born small for their gestational age, with weight below the 10th percentile. Not only do SGA infants suffer growth issues after birth, they have elevated risk for the development of metabolic and cardiovascular diseases later in life. Current research has suggested that in cases of SGA infants, maternal milk and breastfeeding are not affected. The mother of an SGA infant was diagnosed with placental insufficiency and Gestational Diabetes Mellitus (GDM) during her pregnancy. The infant was born term, at 38 weeks 3 days, and SGA. The mother had a low milk supply and her milk composition differed from reference values such that the daily infant intake provided less than 50% of the required energy intake at 3 months. CONCLUSION: In cases of SGA and/or GDM, maternal milk quality and quantity may be compromised. This requires follow-up in order to reduce the disease risk for SGA infants and the corresponding public health implications

    Normal lactational environment restores cardiomyocyte number after uteroplacental insufficiency: implications for the preterm neonate

    No full text
    A reduced complement of cardiomyocytes in early life can adversely affect life-long cardiac functional reserve. In the present study, using a cross-fostering approach in rats, we examined the contributions of the prenatal and postnatal environments in the programming of cardiomyocyte growth. Rat dams underwent either bilateral uterine vessel ligation (Restricted) or sham surgery (Control) on day 18 of gestation. One day after birth, Control and Restricted pups were cross-fostered onto Control (normal lactation) or Restricted (impaired lactation due to impaired mammary gland formation) mothers. In male offspring, genes involved in cardiomyocyte differentiation, proliferation, hypertrophy and apoptosis were examined at gestational day 20 and postnatal days 1 and 7 to assess effects on cardiomyocyte growth. At postnatal day 7 cardiomyocyte number was determined stereologically. Offspring were examined at age 6 mo for evidence of hypertension and pathological cardiac gene expression. There was an increase in Igf1 and Igf2 mRNA expression in hearts of Restricted pups at gestational day 20. At postnatal day 7, Agtr1a and Agtr1b mRNA expression as well as Bcl2 and Cmyc were elevated in all hearts from offspring that were prenatally or postnatally growth restricted. There was a significant reduction (-29%) in cardiomyocyte number in the Restricted-on-Restricted group. Importantly, this deficit was prevented by optimization of postnatal nutrition (in the Restricted-on-Control group). At 6 mo, blood pressure was significantly elevated in the Restricted-on-Restricted group, but there was no difference in expression of the cardiac hypertrophy, remodeling or angiogenic genes across groups. In conclusion, the findings reveal a critical developmental window, when cardiomyocytes are still proliferating, whereby improved neonatal nutrition has the capacity to restore cardiomyocyte number to normal levels. These findings are of particular relevance to the preterm infant who is born at a time when cardiomyocytes are immature and still dividing

    Leptin in pregnancy and development: A contributor to adulthood disease?

    No full text
    Emerging research has highlighted the importance of leptin in fetal growth and development independent of its essential role in the maintenance of hunger and satiety through the modulation of neuropeptide Y and proopiomelanocortin neurons. Alterations in maternal-placental-fetal leptin exchange may modify the development of the fetus and contribute to the increased risk of developing disease in adulthood. In addition, leptin also plays an important role in reproductive functions, with plasma leptin concentrations rising in pregnant women, peaking during the third trimester. Elevated plasma leptin concentrations occur at the completion of organogenesis, and research in animal models has demonstrated that leptin is involved in the development and maturation of a number of organs, including the heart, brain, kidneys, and pancreas. Elevated maternal plasma leptin is associated with maternal obesity, and reduced fetal plasma leptin is correlated with intrauterine growth restriction. Alterations in plasma leptin during development may be associated with an increased risk of developing a number of adulthood diseases, including cardiovascular, metabolic, and renal diseases via altered fetal development and organogenesis. Importantly, research has shown that leptin antagonism after birth significantly reduces maturation of numerous organs. Conversely, restoration of the leptin deficiency after birth in growth-restricted animals restores the offspring's body weight and improves organogenesis. Therefore, leptin appears to play a major role in organogenesis, which may adversely affect the risk of developing a number of diseases in adulthood. Therefore, greater understanding of the role of leptin during development may assist in the prevention and treatment of a number of disease states that occur in adulthood.No Full Tex

    Uteroplacental insufficiency leads to hypertension, but not glucose intolerance or impaired skeletal muscle mitochondrial biogenesis, in 12-month-old rats

    Get PDF
    Growth restriction impacts on offspring development and increases their risk of disease in adulthood which is exacerbated with "second hits." The aim of this study was to investigate if blood pressure, glucose tolerance, and skeletal muscle mitochondrial biogenesis were altered in 12-month-old male and female offspring with prenatal or postnatal growth restriction. Bilateral uterine vessel ligation induced uteroplacental insufficiency and growth restriction in offspring (Restricted). A sham surgery was also performed during pregnancy (Control) and some litters from sham mothers had their litter size reduced (Reduced litter), which restricted postnatal growth. Growth-restricted females only developed hypertension at 12 months, which was not observed in males. In Restricted females only homeostasis model assessment for insulin resistance was decreased, indicating enhanced hepatic insulin sensitivity, which was not observed in males. Plasma leptin was increased only in the Reduced males at 12 months compared to Control and Restricted males, which was not observed in females. Compared to Controls, leptin, ghrelin, and adiponectin were unaltered in the Restricted males and females, suggesting that at 12 months of age the reduction in body weight in the Restricted offspring is not a consequence of circulating adipokines. Skeletal muscle PGC-1α levels were unaltered in 12-month-old male and female rats, which indicate improvements in lean muscle mass by 12 months of age. In summary, sex strongly impacts the cardiometabolic effects of growth restriction in 12-month-old rats and it is females who are at particular risk of developing long-term hypertension following growth restriction
    corecore