39 research outputs found

    CEOS Intercalibration of Ground-Based Spectrometers and Lidars: Final Report

    Get PDF
    The ESA CEOS Intercalibration project concentrated on important calibration activities addressing three key components of the ground-based network ground-truthing capacity in Europe, namely the Dobson/Brewer network of ozone spectrophotometers, the aerosol lidar EARLINET network and the UV-Vis MAXDOAS technique for air quality remote-sensing. This document summarizes activities and achievements during the third part of the ESA CEOS Intercalibration project. The period covered by this report extends from February 2012 until October 2012

    CEOS Intercalibration of Ground-Based Spectrometers and Lidars: Second Progress Report

    Get PDF
    This document summarizes activities and achievements during the second part of the ESA CEOS Intercalibration project. The period covered by this report extends from February 2011 until January 2012

    Studies of the horizontal inhomogeneities in NO2 concentrations above a shipping lane using ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements and validation with airborne imaging DOAS measurements

    Get PDF
    This study describes a novel application of an “onion-peeling” approach to multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of shipping emissions aiming at investigating the strong horizontal inhomogeneities in NO2 over a shipping lane. To monitor ship emissions on the main shipping route towards the port of Hamburg, a two-channel (UV and visible) MAX-DOAS instrument was deployed on the island Neuwerk in the German Bight, 6–7 km south of the main shipping lane. Utilizing the fact that the effective light path length in the atmosphere depends systematically on wavelength, simultaneous measurements and DOAS retrievals in the UV and visible spectral ranges are used to probe air masses at different horizontal distances to the instrument to estimate two-dimensional pollutant distributions. Two case studies have been selected to demonstrate the ability to derive the approximate plume positions in the observed area. A situation with northerly wind shows high NO2 concentrations close to the measurement site and low values in the north of the shipping lane. The opposite situation with southerly wind, unfavorable for the on-site in situ instrumentation, demonstrates the ability to detect enhanced NO2 concentrations several kilometers away from the instrument. Using a Gaussian plume model, in-plume NO2 volume mixing ratios can be derived from the MAX-DOAS measurements. For validation, a comparison to airborne imaging DOAS measurements during the NOSE campaign in July 2013 is performed, showing good agreement between the approximate plume position derived from the onion-peeling MAX-DOAS and the airborne measurements as well as between the derived in-plume NO2 volume mixing ratios (VMRs)

    Glyoxal observations in the global marine boundary layer

    Get PDF
    Glyoxal is an important intermediate species formed by the oxidation of common biogenic and anthropogenic volatile organic compounds such as isoprene, toluene and acetylene. Although glyoxal has been shown to play an important role in urban and forested environments, its role in the open ocean environment is still not well understood, with only a few observations showing evidence for its presence in the open ocean marine boundary layer (MBL). In this study, we report observations of glyoxal from ten field campaigns in different parts of the world's oceans. These observations together represent the largest database of glyoxal in the MBL. The measurements are made with similar instruments that have been used in the past, although the open ocean values reported here, average of about 25 pptv with an upper limit of 40 pptv, are much lower than previously reported observations that were consistently higher than 40 pptv and had an upper limit of 140 pptv, highlighting the uncertainties in the Differential Optical Absorption Spectroscopy (DOAS) method for the retrieval of glyoxal. Despite retrieval uncertainties, the results reported in this work support previous suggestions that the currently known sources of glyoxal are insufficient to explain the average MBL concentrations. This suggests that there is an additional missing source, more than a magnitude larger than currently known sources, which is necessary to account for the observed atmospheric levels of glyoxal. Therefore it could play a more important role in the MBL than previously considered

    Validation of Sentinel-5P TROPOMI tropospheric NO2 products by comparison with NO2 measurements from airborne imaging, ground-based stationary, and mobile car DOAS measurements during the S5P-VAL-DE-Ruhr campaign

    Get PDF
    Airborne imaging differential optical absorption spectroscopy (DOAS), ground-based stationary and car DOAS measurements were conducted during the S5P-VAL-DE-Ruhr campaign in September 2020. The campaign area is located in the Rhine-Ruhr region of North Rhine-Westphalia, Western Germany, which is a pollution hotspot in Europe comprising urban and large industrial emitters. The measurements are used to validate space-borne NO2 tropospheric vertical column density data products from the Sentinel-5 Precursor (S5P) TROPOspheric Monitoring Instrument (TROPOMI). Seven flights were performed with the airborne imaging DOAS instrument for measurements of atmospheric pollution (AirMAP), providing measurements which were used to create continuous maps of NO2 in the layer below the aircraft. These flights cover many S5P ground pixels within an area of 30 km x 35 km and were accompanied by ground-based stationary measurements and three mobile car DOAS instruments. Stationary measurements were conducted by two Pandora, two zenith-sky and two MAX-DOAS instruments distributed over three target areas. Ground-based stationary and car DOAS measurements are used to evaluate the AirMAP tropospheric NO2 vertical column densities and show high Pearson correlation coefficients of 0.87 and 0.89 and slopes of 0.93 &plusmn; 0.09 and 0.98 &plusmn; 0.02 for the stationary and car DOAS, respectively. Having a spatial resolution of about 100 m x 30 m, the AirMAP tropospheric NO2 vertical column density (VCD) data creates a link between the ground-based and the TROPOMI measurements with a resolution of 3.5 km x 5.5 km and is therefore well suited to validate the TROPOMI tropospheric NO2 VCD. The measurements on the seven flight days show strong NO2 variability, which is dependent on the different target areas, the weekday, and the meteorological conditions. The AirMAP campaign dataset is compared to the TROPOMI NO2 operational off-line (OFFL) V01.03.02 data product, the reprocessed NO2 data, using the V02.03.01 of the official L2 processor, provided by the Product Algorithm Laboratory (PAL), and several scientific TROPOMI NO2 data products. The TROPOMI data products and the AirMAP data are highly correlated with correlation coefficients between 0.72 and 0.87, and slopes of 0.38 &plusmn; 0.02 to 1.02 &plusmn; 0.07. On average, TROPOMI tropospheric NO2 VCDs are lower than the AirMAP NO2 results. The slope increased from 0.38 &plusmn; 0.02 for the operational OFFL V01.03.02 product to 0.83 &plusmn; 0.06 after the improvements in the retrieval of the PAL V02.03.01 product were implemented. Different auxiliary data, such as spatially higher resolved a priori NO2 vertical profiles, surface reflectivity and the cloud treatment, are investigated using scientific TROPOMI tropospheric NO2 VCD data products to evaluate their impact on the operational TROPOMI NO2 VCD data product. The comparison of the AirMAP campaign dataset to the scientific data products shows that the choice of surface reflectivity data base has a minor impact on the tropospheric NO2 VCD retrieval in the campaign region and season. In comparison, the replacement of the a priori NO2 profile in combination with the improvements in the retrieval of the PAL V02.03.01 product regarding cloud heights has a major impact on the tropospheric NO2 VCD retrieval and increases the slope from 0.88 &plusmn; 0.06 to 1.00 &plusmn; 0.07. This study demonstrates that the underestimation of the TROPOMI tropospheric NO2 VCD product with respect to the validation dataset has been and can be further significantly improved.</p

    Messung von Formaldehyd und Glyoxal mit Fernerkundungstechniken

    No full text
    This work describes global measurements of the trace gas formaldehyde derived from stray light spectra in the ultraviolet region measured by the satellite instruments GOME and SCIAMACHY along with ground-based MAX-DOAS instruments. The analysis was carried out using the method of the Differential Optical Absorption Spectroscopy (DOAS). The work complementarily presents the first measurements of the trace gas glyoxal in the visible wavelength region. New algorithms to derive vertical columns of the satellite instruments are developed and described. For the ground-based geometry a way was found to derive profile information for the tropo-spheric absorbers. This work therefore contributes fundamentally to an improvement in the understanding of the chemistry of the troposphere. It offers the opportunity to obtain a better estimate on the sources and sinks of hydrocarbons in the atmosphere. Particularly, a number of case studies illustrates the significance of biogenic emissions and of biomass burning for the global distribution of the oxygenated volatile organic compounds. A comparison with results from a global atmosphere model shows only a moderate agreement in many regions of the earth. This reflects the limited state of knowledge at present about the very complex physical and chemical processes in the troposphere

    The retrieval of oxygenated volatile organic compounds by remote sensing techniques

    No full text
    This work describes global measurements of the trace gas formaldehyde derived from stray light spectra in the ultraviolet region measured by the satellite instruments GOME and SCIAMACHY along with ground-based MAX-DOAS instruments. The analysis was carried out using the method of the Differential Optical Absorption Spectroscopy (DOAS). The work complementarily presents the first measurements of the trace gas glyoxal in the visible wavelength region. New algorithms to derive vertical columns of the satellite instruments are developed and described. For the ground-based geometry a way was found to derive profile information for the tropo-spheric absorbers. This work therefore contributes fundamentally to an improvement in the understanding of the chemistry of the troposphere. It offers the opportunity to obtain a better estimate on the sources and sinks of hydrocarbons in the atmosphere. Particularly, a number of case studies illustrates the significance of biogenic emissions and of biomass burning for the global distribution of the oxygenated volatile organic compounds. A comparison with results from a global atmosphere model shows only a moderate agreement in many regions of the earth. This reflects the limited state of knowledge at present about the very complex physical and chemical processes in the troposphere

    A study of the trace gas columns of O3, NO2 and HCHO over Africa in September 1997

    No full text
    Retrievals of trace gas columns from the measurements of backscattered radiation by GOME (Global Ozone Monitoring Experiment) show that enhanced tropospheric columns of ozone (O3), nitrogen dioxide (NO2) and formaldehyde (HCHO), over the African continent occur frequently. This study focuses on the behaviour of trace gases over Africa in September 1997, a period impacted by the strongest known El Nino phase of the ENSO. It investigates our qualitative and quantitative understanding of the retrieved tropospheric trace gas column densities. The emissions of NOx and volatile organic compounds (VOC) from biomass burning, biogenic sources and lightning and their photochemical transformation have been investigated. By performing a trajectory analysis, the transport of air masses from the different emission regions was analysed and the potential atmospheric spatial distribution determined. BRemen’s Atmospheric PHOtochemical model (BRAPHO) was applied to compute the chemistry along a large number of trajectories. From these results, tropospheric column amounts of O3, NO2 and HCHO were derived. Tropospheric trace gas columns retrieved from GOME measurements and those calculated are in reasonable agreement. Their general spatial extent was similar in the lower troposphere but the modeled trace gas columns in the upper troposphere were located south of the retrieved columns. We attribute this behaviour to uncertainties in the ERA-40 meteorological data in the upper troposphere. The significance of biomass burning and of biogenic emissions with respect to HCHO columns over Africa was investigated. The analysis reveals that the total amounts of HCHO generated over Africa during September 1997 as a result of biomass burning and biogenic emissions are similar. However the HCHO from biogenic sources has the highest specific columns and these are located close to their source. In comparison the HCHO from biomass burning is predicted to be produced and transported over a much wider area. Overall all the emission processes mix together to produce the plume of O3
    corecore