4,792 research outputs found

    Method of coating circuit paths on printed circuit boards with solder Patent

    Get PDF
    Solder coating process for printed copper circuit protectio

    Addressing student models of energy loss in quantum tunnelling

    Full text link
    We report on a multi-year, multi-institution study to investigate student reasoning about energy in the context of quantum tunnelling. We use ungraded surveys, graded examination questions, individual clinical interviews, and multiple-choice exams to build a picture of the types of responses that students typically give. We find that two descriptions of tunnelling through a square barrier are particularly common. Students often state that tunnelling particles lose energy while tunnelling. When sketching wave functions, students also show a shift in the axis of oscillation, as if the height of the axis of oscillation indicated the energy of the particle. We find inconsistencies between students' conceptual, mathematical, and graphical models of quantum tunnelling. As part of a curriculum in quantum physics, we have developed instructional materials to help students develop a more robust and less inconsistent picture of tunnelling, and present data suggesting that we have succeeded in doing so.Comment: Originally submitted to the European Journal of Physics on 2005 Feb 10. Pages: 14. References: 11. Figures: 9. Tables: 1. Resubmitted May 18 with revisions that include an appendix with the curriculum materials discussed in the paper (4 page small group UW-style tutorial

    Elements of Proximal Formative Assessment in Learners’ Discourse about Energy

    Get PDF
    Proximal formative assessment, the just-in-time elicitation of students\u27 ideas that informs ongoing instruction, is usually associated with the instructor in a formal classroom setting. However, the elicitation, assessment, and subsequent instruction that characterize proximal formative assessment are also seen in discourse among peers. We present a case in which secondary teachers in a professional development course at SPU are discussing energy flow in refrigerators. In this episode, a peer is invited to share her thinking (elicitation). Her idea that refrigerators move heat from a relatively cold compartment to a hotter environment is inappropriately judged as incorrect (assessment). The instruction (peer explanation) that follows is based on the second law of thermodynamics, and acts as corrective rather than collaborative

    Using resource graphs to represent conceptual change

    Full text link
    We introduce resource graphs, a representation of linked ideas used when reasoning about specific contexts in physics. Our model is consistent with previous descriptions of resources and coordination classes. It can represent mesoscopic scales that are neither knowledge-in-pieces or large-scale concepts. We use resource graphs to describe several forms of conceptual change: incremental, cascade, wholesale, and dual construction. For each, we give evidence from the physics education research literature to show examples of each form of conceptual change. Where possible, we compare our representation to models used by other researchers. Building on our representation, we introduce a new form of conceptual change, differentiation, and suggest several experimental studies that would help understand the differences between reform-based curricula.Comment: 27 pages, 14 figures, no tables. Submitted for publication to the Physical Review Special Topics Physics Education Research on March 8, 200

    Octave-spanning single-cycle middle-infrared generation through optical parametric amplification in LiGaS<sub>2</sub>

    No full text
    We report the generation of extremely broadband and inherently phase-locked mid-infrared pulses covering the 5 to 11 µm region. The concept is based on two stages of optical parametric amplification starting from a 270-fs Yb:KGW laser source. A continuum seeded, second harmonic pumped pre-amplifier in β-BaB2O4 (BBO) produces tailored broadband near-infrared pulses that are subsequently mixed with the fundamental pump pulses in LiGaS2 (LGS) for mid-infrared generation and amplification. The pulse bandwidth and chirp is managed entirely by selected optical filters and bulk material. We find an overall quantum efficiency of 1% and a mid-infrared spectrum smoothly covering 5-11 µm with a pulse energy of 220 nJ at 50 kHz repetition rate. Electro-optic sampling with 12-fs long white-light pulses directly from self-compression in a YAG crystal reveals near-single-cycle mid-infrared pulses (32 fs) with passively stable carrier-envelope phase. Such pulses will be ideal for producing attosecond electron pulses or for advancing molecular fingerprint spectroscopy.publishe
    • …
    corecore