152 research outputs found
MC: Multi-wavelength and dynamical analysis of the merging galaxy cluster ZwCl 0008.8+5215: An older and less massive Bullet Cluster
We analyze a rich dataset including Subaru/SuprimeCam, HST/ACS and WFC3,
Keck/DEIMOS, Chandra/ACIS-I, and JVLA/C and D array for the merging galaxy
cluster ZwCl 0008.8+5215. With a joint Subaru/HST weak gravitational lensing
analysis, we identify two dominant subclusters and estimate the masses to be
M
and 1.2 M. We estimate the
projected separation between the two subclusters to be
924 kpc. We perform a clustering analysis on
confirmed cluster member galaxies and estimate the line of sight velocity
difference between the two subclusters to be 92164 km s. We
further motivate, discuss, and analyze the merger scenario through an analysis
of the 42 ks of Chandra/ACIS-I and JVLA/C and D polarization data. The X-ray
surface brightness profile reveals a remnant core reminiscent of the Bullet
Cluster. The X-ray luminosity in the 0.5-7.0 keV band is
1.70.110 erg s and the X-ray
temperature is 4.900.13 keV. The radio relics are polarized up to 40.
We implement a Monte Carlo dynamical analysis and estimate the merger velocity
at pericenter to be 1800 km s. ZwCl
0008.8+5215 is a low-mass version of the Bullet Cluster and therefore may prove
useful in testing alternative models of dark matter. We do not find significant
offsets between dark matter and galaxies, as the uncertainties are large with
the current lensing data. Furthermore, in the east, the BCG is offset from
other luminous cluster galaxies, which poses a puzzle for defining dark matter
-- galaxy offsets.Comment: 22 pages, 19 figures, accepted for publication in the Astrophysical
Journal on March 13, 201
Cosmic Shear Results from the Deep Lens Survey - II: Full Cosmological Parameter Constraints from Tomography
We present a tomographic cosmic shear study from the Deep Lens Survey (DLS),
which, providing a limiting magnitude r_{lim}~27 (5 sigma), is designed as a
pre-cursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on
depth. Using five tomographic redshift bins, we study their auto- and
cross-correlations to constrain cosmological parameters. We use a
luminosity-dependent nonlinear model to account for the astrophysical
systematics originating from intrinsic alignments of galaxy shapes. We find
that the cosmological leverage of the DLS is among the highest among existing
>10 sq. deg cosmic shear surveys. Combining the DLS tomography with the 9-year
results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives
Omega_m=0.293_{-0.014}^{+0.012}, sigma_8=0.833_{-0.018}^{+0.011},
H_0=68.6_{-1.2}^{+1.4} km/s/Mpc, and Omega_b=0.0475+-0.0012 for LCDM, reducing
the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume
flatness for LCDM, we obtain the curvature constraint
Omega_k=-0.010_{-0.015}^{+0.013} from the DLS+WMAP9 combination, which however
is not well constrained when WMAP9 is used alone. The dark energy equation of
state parameter w is tightly constrained when Baryonic Acoustic Oscillation
(BAO) data are added, yielding w=-1.02_{-0.09}^{+0.10} with the DLS+WMAP9+BAO
joint probe. The addition of supernova constraints further tightens the
parameter to w=-1.03+-0.03. Our joint constraints are fully consistent with the
final Planck results and also the predictions of a LCDM universe.Comment: Accepted for publication in Ap
MC: Subaru and Hubble Space Telescope Weak-Lensing Analysis of the Double Radio Relic Galaxy Cluster PLCK G287.0+32.9
The second most significant detection of the Planck Sunyaev Zel'dovich
survey, PLCK~G287.0+32.9 () boasts two similarly bright radio relics
and a radio halo. One radio relic is located kpc northwest of the
X-ray peak and the other Mpc to the southeast. This large difference
suggests that a complex merging scenario is required. A key missing puzzle for
the merging scenario reconstruction is the underlying dark matter distribution
in high resolution. We present a joint Subaru Telescope and {\it Hubble Space
Telescope} weak-lensing analysis of the cluster. Our analysis shows that the
mass distribution features four significant substructures. Of the
substructures, a primary cluster of mass
$M_{200\text{c}}=1.59^{+0.25}_{-0.22}\times 10^{15} \ h^{-1}_{70} \
\text{M}_{\odot}M_{200\text{c}}=1.16^{+0.15}_{-0.13}\times 10^{14} \ h^{-1}_{70} \
\text{M}_{\odot}\sim 400\sim 2M_{200\text{c}}=1.68^{+0.22}_{-0.20}\times
10^{14} \ h^{-1}_{70} \ \text{M}_{\odot}M_{200\text{c}}=1.87^{+0.24}_{-0.22}\times 10^{14} \ h^{-1}_{70} \
\text{M}_{\odot}$, is northwest of the X-ray peak and beyond the NW radio
relic.Comment: 19 pages, 14 figures; Accepted to Ap
The rise and fall of star-formation in merging galaxy clusters
CIZA J2242.8+5301 (`Sausage') and 1RXS J0603.3+4213 (`Toothbrush') are two
low-redshift (), massive (), post-core
passage merging clusters, which host shock waves traced by diffuse radio
emission. To study their star-formation properties, we uniformly survey the
`Sausage' and `Toothbrush' clusters in broad and narrow band filters and select
a sample of and line emitters, down to a rest-frame equivalent
width ({\AA}). We robustly separate between H and higher redshift
emitters using a combination of optical multi-band (B, g, V, r, i, z) and
spectroscopic data. We build H luminosity functions for the entire
cluster region, near the shock fronts, and away from the shock fronts and find
striking differences between the two clusters. In the dynamically younger,
Gyr old `Sausage' cluster we find numerous () H emitters above a
star-formation rate (SFR) of M_{\sun} yr surprisingly located
in close proximity to the shock fronts, embedded in very hot intra-cluster
medium plasma. The SFR density for the cluster population is at least at the
level of typical galaxies at . Down to the same star-formation rate,
the possibly dynamically more evolved `Toothbrush' cluster has only
H galaxies. The cluster H galaxies fall on the SFR-stellar mass
relation for the field. However, the `Sausage' cluster has an
H emitter density times that of blank fields. If the shock passes
through gas-rich cluster galaxies, the compressed gas could collapse into dense
clouds and excite star-formation for a few Myr. This process ultimately
leads to a rapid consumption of the molecular gas, accelerating the
transformation of gas-rich field spirals into cluster S0s or ellipticals.Comment: Accepted for publication in MNRAS after minor referee report. 21
pages, 15 figures, 5 table
Multi-wavelength Analysis of the Merging Galaxy Cluster A115
A115 is a merging galaxy cluster at with a number of remarkable
features including a giant ( Mpc) radio relic, two asymmetric X-ray
peaks with trailing tails, and a peculiar line-of-sight velocity structure. We
present a multi-wavelength study of A115 using optical imaging data from
Subaru, X-ray data from , and spectroscopic data from the Keck/DEIMOS
and MMT/Hectospec instruments. Our weak-lensing analysis shows that the cluster
is comprised of two subclusters whose mass centroids are in excellent agreement
with the two BCG positions ("). By modeling A115 with a
superposition of two Navarro-Frenk-White halos, we determine the masses of the
northern and southern subclusters to be and , respectively. Combining the two halos, we estimate the total
cluster mass to be
at Mpc. These weak-lensing masses are
significantly (a factor of 3-10) lower than what is implied by the X-ray and
optical spectroscopic data. We attribute the difference to the gravitational
and hydrodynamic disruption caused by the collision between the two
subclusters.Comment: 20 pages, 17 figures, Accepted for publication in Ap
MC2:galaxy imaging and redshift analysis of the merging cluster CIZA J2242.8+5301
X-ray and radio observations of CIZA J2242.8+5301 suggest that it is a major cluster merger. Despite being well studied in the X-ray and radio, little has been presented on the cluster structure and dynamics inferred from its galaxy population. We carried out a deep () broadband imaging survey of the system with Subaru SuprimeCam (g and i bands) and the Canada–France–Hawaii Telescope (r band), as well as a comprehensive spectroscopic survey of the cluster area (505 redshifts) using Keck DEep Imaging Multi-Object Spectrograph. We use these data to perform a comprehensive galaxy/redshift analysis of the system, which is the first step to a proper understanding of the geometry and dynamics of the merger, as well as using the merger to constrain self-interacting dark matter. We find that the system is dominated by two subclusters of comparable richness with a projected separation of 6\buildrel{\,\prime}\over{.} 9_{-0.5}^{+0.7} (1.3). We find that the north and south subclusters have similar redshifts of with a relative line-of-sight (LOS) velocity difference of 69 ± 190 . We also find that north and south subclusters have velocity dispersions of and , respectively. These correspond to masses of and , respectively. While velocity dispersion measurements of merging clusters can be biased, we believe the bias in this system to be minor due to the large projected separation and nearly plane-of-sky merger configuration. We also find that the cDs of the north and south subclusters are very near their subcluster centers, in both projection (55 and 85 kpc, respectively) and normalized LOS velocity ( and 0.21 ± 0.12 for the north and south, respectively). CIZA J2242.8+5301 is a relatively clean dissociative cluster merger with near 1:1 mass ratio, which makes it an ideal merger for studying merger-associated physical phenomena
Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales
Most of the matter in the universe is not luminous and can be observed
directly only through its gravitational effect. An emerging technique called
weak gravitational lensing uses background galaxies to reveal the foreground
dark matter distribution on large scales. Light from very distant galaxies
travels to us through many intervening overdensities which gravitationally
distort their apparent shapes. The observed ellipticity pattern of these
distant galaxies thus encodes information about the large-scale structure of
the universe, but attempts to measure this effect have been inconclusive due to
systematic errors. We report the first detection of this ``cosmic shear'' using
145,000 background galaxies to reveal the dark matter distribution on angular
scales up to half a degree in three separate lines of sight. The observed
angular dependence of this effect is consistent with that predicted by two
leading cosmological models, providing new and independent support for these
models.Comment: 18 pages, 5 figures: To appear in Nature. (This replacement fixes tex
errors and typos.
- …