891 research outputs found
War and dissociation : the case of futurist aesthetics
Thanks to their deliberate engagement in state propaganda Italian Futurists deserved a prominent spot in the history of military aesthetics in the 20th century. However, under what looked like an unequivocal expression of support for war, lied a deep philosophical disagreement concerning its existential and epistemological value. The bone of contention concerned the effects of warfare on perception and, consequently, the means of its depiction. The author analyses this intellectual disagreement within the group and focuses, in particular, on its philosophical implications
Tomographic Magnification of Lyman Break Galaxies in The Deep Lens Survey
Using about 450,000 galaxies in the Deep Lens Survey, we present a detection
of the gravitational magnification of z > 4 Lyman Break Galaxies by massive
foreground galaxies with 0.4 < z < 1.0, grouped by redshift. The magnification
signal is detected at S/N greater than 20, and rigorous checks confirm that it
is not contaminated by any galaxy sample overlap in redshift. The inferred
galaxy mass profiles are consistent with earlier lensing analyses at lower
redshift. We then explore the tomographic lens magnification signal by
splitting our foreground galaxy sample into 7 redshift bins. Combining
galaxy-magnification cross-correlations and galaxy angular auto-correlations,
we develop a bias-independent estimator of the tomographic signal. As a
diagnostic of magnification tomography, the measurement of this estimator
rejects a flat dark matter dominated Universe at > 7.5{\sigma} with a fixed
\sigma_8 and is found to be consistent with the expected redshift-dependence of
the WMAP7 {\Lambda}CDM cosmology.Comment: 12 pages, 9 figures, Accepted to MNRA
MC: Subaru and Hubble Space Telescope Weak-Lensing Analysis of the Double Radio Relic Galaxy Cluster PLCK G287.0+32.9
The second most significant detection of the Planck Sunyaev Zel'dovich
survey, PLCK~G287.0+32.9 () boasts two similarly bright radio relics
and a radio halo. One radio relic is located kpc northwest of the
X-ray peak and the other Mpc to the southeast. This large difference
suggests that a complex merging scenario is required. A key missing puzzle for
the merging scenario reconstruction is the underlying dark matter distribution
in high resolution. We present a joint Subaru Telescope and {\it Hubble Space
Telescope} weak-lensing analysis of the cluster. Our analysis shows that the
mass distribution features four significant substructures. Of the
substructures, a primary cluster of mass
$M_{200\text{c}}=1.59^{+0.25}_{-0.22}\times 10^{15} \ h^{-1}_{70} \
\text{M}_{\odot}M_{200\text{c}}=1.16^{+0.15}_{-0.13}\times 10^{14} \ h^{-1}_{70} \
\text{M}_{\odot}\sim 400\sim 2M_{200\text{c}}=1.68^{+0.22}_{-0.20}\times
10^{14} \ h^{-1}_{70} \ \text{M}_{\odot}M_{200\text{c}}=1.87^{+0.24}_{-0.22}\times 10^{14} \ h^{-1}_{70} \
\text{M}_{\odot}$, is northwest of the X-ray peak and beyond the NW radio
relic.Comment: 19 pages, 14 figures; Accepted to Ap
Thermoregulatory strategy may shape immune investment in Drosophila melanogaster
As temperatures change, insects alter the amount of melanin in their cuticle to improve thermoregulation. However, melanin is also central to insect immunity, suggesting that thermoregulatory strategy may indirectly impact immune defense by altering the abundance of melanin pathway components (a hypothesis we refer to as thermoregulatory-dependent immune investment). This may be the case in the cricket Allonemobius socius, where warm environments (both seasonal and geographical) produced crickets with lighter cuticles and increased pathogen susceptibility. Unfortunately, the potential for thermoregulatory strategy to influence insect immunity has not been widely explored. Here we address the relationships between temperature, thermoregulatory strategy and immunity in the fruit fly Drosophila melanogaster. To this end, flies from two separate Canadian populations were reared in either a summer-or autumn-like environment. Shortly after adult eclosion, flies were moved to a common environment where their cuticle color and susceptibility to a bacterial pathogen (Pseudomonas aeruginosa) were measured. As with A. socius, individuals from summer-like environments exhibited lighter cuticles and increased pathogen susceptibility, suggesting that the thermoregulatory-immunity relationship is evolutionarily conserved across the hemimetabolous and holometabolous clades. If global temperatures continue to rise as expected, then thermoregulation might play an important role in host infection and mortality rates in systems that provide critical ecosystem services (e.g. pollination), or influence the prevalence of insect-vectored disease (e.g. malaria)
The Deep Lens Survey Transient Search I : Short Timescale and Astrometric Variability
We report on the methodology and first results from the Deep Lens Survey
transient search. We utilize image subtraction on survey data to yield all
sources of optical variability down to 24th magnitude. Images are analyzed
immediately after acquisition, at the telescope and in near-real time, to allow
for followup in the case of time-critical events. All classes of transients are
posted to the web upon detection. Our observing strategy allows sensitivity to
variability over several decades in timescale. The DLS is the first survey to
classify and report all types of photometric and astrometric variability
detected, including solar system objects, variable stars, supernovae, and short
timescale phenomena. Three unusual optical transient events were detected,
flaring on thousand-second timescales. All three events were seen in the B
passband, suggesting blue color indices for the phenomena. One event (OT
20020115) is determined to be from a flaring Galactic dwarf star of spectral
type dM4. From the remaining two events, we find an overall rate of \eta = 1.4
events deg-2 day-1 on thousand-second timescales, with a 95% confidence limit
of \eta < 4.3. One of these events (OT 20010326) originated from a compact
precursor in the field of galaxy cluster Abell 1836, and its nature is
uncertain. For the second (OT 20030305) we find strong evidence for an extended
extragalactic host. A dearth of such events in the R passband yields an upper
95% confidence limit on short timescale astronomical variability between 19.5 <
R < 23.4 of \eta_R < 5.2. We report also on our ensemble of astrometrically
variable objects, as well as an example of photometric variability with an
undetected precursor.Comment: 24 pages, 12 figures, 3 tables. Accepted for publication in ApJ.
Variability data available at http://dls.bell-labs.com/transients.htm
Weak Lensing Detection of Cl 1604+4304 at z = 0.90
We present a weak lensing analysis of the high-redshift cluster Cl 1604+4304.
At z=0.90, this is the highest-redshift cluster yet detected with weak lensing.
It is also one of a sample of high-redshift, optically-selected clusters whose
X-ray temperatures are lower than expected based on their velocity dispersions.
Both the gas temperature and galaxy velocity dispersion are proxies for its
mass, which can be determined more directly by a lensing analysis. Modeling the
cluster as a singular isothermal sphere, we find that the mass contained within
projected radius R is 3.69+-1.47 * (R/500 kpc) 10^14 M_odot. This corresponds
to an inferred velocity dispersion of 1004+-199 km/s, which agrees well with
the measured velocity dispersion of 989+98-76 km/s (Gal & Lubin 2004). These
numbers are higher than the 575+110-85 km/s inferred from Cl 1604+4304 X-ray
temperature, however all three velocity dispersion estimates are consistent
within ~ 1.9 sigma.Comment: Revised version accepted for publication in AJ (January 2005). 2
added figures (6 figures total
Research priorities for global food security under extreme events
Extreme events threaten the production and supply of food around the world. They create cascading and systemic impacts posing significant challenges to food systems research and policy alike. However, research teams and policymakers are not tackling these connections and are developing solutions in isolation. We bring together experts to prioritize threats to global food security from extreme events as well as research. Our findings illustrate the importance of coordinated design, adoption, and governance of food systems for resilience
Diagnosing space telescope misalignment and jitter using stellar images
Accurate knowledge of the telescope's point spread function (PSF) is
essential for the weak gravitational lensing measurements that hold great
promise for cosmological constraints. For space telescopes, the PSF may vary
with time due to thermal drifts in the telescope structure, and/or due to
jitter in the spacecraft pointing (ground-based telescopes have additional
sources of variation). We describe and simulate a procedure for using the
images of the stars in each exposure to determine the misalignment and jitter
parameters, and reconstruct the PSF at any point in that exposure's field of
view. The simulation uses the design of the SNAP (http://snap.lbl.gov)
telescope. Stellar-image data in a typical exposure determines secondary-mirror
positions as precisely as . The PSF ellipticities and size, which
are the quantities of interest for weak lensing are determined to and accuracies respectively in each exposure,
sufficient to meet weak-lensing requirements. We show that, for the case of a
space telescope, the PSF estimation errors scale inversely with the square root
of the total number of photons collected from all the usable stars in the
exposure.Comment: 20 pages, 6 figs, submitted to PAS
- …