236 research outputs found

    Flexible network reconstruction from relational databases with Cytoscape and CytoSQL

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular interaction networks can be efficiently studied using network visualization software such as Cytoscape. The relevant nodes, edges and their attributes can be imported in Cytoscape in various file formats, or directly from external databases through specialized third party plugins. However, molecular data are often stored in relational databases with their own specific structure, for which dedicated plugins do not exist. Therefore, a more generic solution is presented.</p> <p>Results</p> <p>A new Cytoscape plugin 'CytoSQL' is developed to connect Cytoscape to any relational database. It allows to launch SQL ('Structured Query Language') queries from within Cytoscape, with the option to inject node or edge features of an existing network as SQL arguments, and to convert the retrieved data to Cytoscape network components. Supported by a set of case studies we demonstrate the flexibility and the power of the CytoSQL plugin in converting specific data subsets into meaningful network representations.</p> <p>Conclusions</p> <p>CytoSQL offers a unified approach to let Cytoscape interact with relational databases. Thanks to the power of the SQL syntax, this tool can rapidly generate and enrich networks according to very complex criteria. The plugin is available at <url>http://www.ptools.ua.ac.be/CytoSQL</url>.</p

    Analysis of Large Phenotypic Variability of EEC and SHFM4 Syndromes Caused by K193E Mutation of the TP63 Gene

    Get PDF
    EEC (ectrodactyly, ectodermal dysplasia, clefting; OMIM 604292) is an autosomal dominant developmental disorder resulting mainly from pathogenic mutations of the DNA-binding domain (DBD) of the TP63 gene. In this study, we showed that K193E mutation in nine affected individuals of a four-generation kindred with a large degree of phenotypic variability causes four different syndromes or TP63-related disorders: EEC, Ectrodactyly-ectodermal dysplasia (EE), isolated ectodermal dysplasia, and isolated Split Hand/Foot Malformation type 4 (SHFM4). Genotype-phenotype and DBD structural modeling analysis showed that the K193-located loop L2-A is associated with R280 through hydrogen bonding interactions, while R280 mutations also often cause large phenotypic variability of EEC and SHFM4. Thus, we speculate that K193 and several other DBD mutation-associated syndromes may share similar pathogenic mechanisms, particularly in the case of the same mutation with different phenotypes. Our study and others also suggest that the phenotypic variability of EEC is attributed, at least partially, to genetic and/or epigenetic modifiers

    Rapid screening for chromosomal aneuploidies using array-MLPA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromosome abnormalities, especially trisomy of chromosome 21, 13, or 18 as well as sex chromosome aneuploidy, are a well-established cause of pregnancy loss. Cultured cell karyotype analysis and FISH have been considered reliable detectors of fetal abnormality. However, results are usually not available for 3-4 days or more. Multiplex ligation-dependent probe amplification (MLPA) has emerged as an alternative rapid technique for detection of chromosome aneuploidies. However, conventional MLPA does not allow for relative quantification of more than 50 different target sequences in one reaction and does not detect mosaic trisomy. A multiplexed MLPA with more sensitive detection would be useful for fetal genetic screening.</p> <p>Methods</p> <p>We developed a method of array-based MLPA to rapidly screen for common aneuploidies. We designed 116 universal tag-probes covering chromosomes 13, 18, 21, X, and Y, and 8 control autosomal genes. We performed MLPA and hybridized the products on a 4-well flow-through microarray system. We determined chromosome copy numbers by analyzing the relative signals of the chromosome-specific probes.</p> <p>Results</p> <p>In a blind study of 161 peripheral blood and 12 amniotic fluid samples previously karyotyped, 169 of 173 (97.7%) including all the amniotic fluid samples were correctly identified by array-MLPA. Furthermore, we detected two chromosome X monosomy mosaic cases in which the mosaism rates estimated by array-MLPA were basically consistent with the results from karyotyping. Additionally, we identified five Y chromosome abnormalities in which G-banding could not distinguish their origins for four of the five cases.</p> <p>Conclusions</p> <p>Our study demonstrates the successful application and strong potential of array-MLPA in clinical diagnosis and prenatal testing for rapid and sensitive chromosomal aneuploidy screening. Furthermore, we have developed a simple and rapid procedure for screening copy numbers on chromosomes 13, 18, 21, X, and Y using array-MLPA.</p

    Metformin efficacy and safety for colorectal polyps: a double-blind randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colorectal cancer is one of the major neoplasms and a leading cause of cancer death worldwide, and new preventive strategies are needed to lower the burden of this disease. Metformin, a biguanide, which is widely used for treating diabetes mellitus, has recently been suggestive to have a suppressive effect on tumorigenesis and cancer cell growth. In a previous study conducted in non-diabetic subjects, we showed that oral short-term low-dose metformin suppressed the development of colorectal aberrant crypt foci (ACF). ACF have been considered as a useful surrogate biomarker of CRC, although the biological significance of these lesions remains controversial. We devised a prospective randomized controlled trial to evaluate the chemopreventive effect of metformin against metachronous colorectal polyps and the safety of this drug in non-diabetic post-polypectomy patients.</p> <p>Methods/Design</p> <p>This study is a multi-center, double-blind, placebo-controlled, randomized controlled trial to be conducted in non-diabetic patients with a recent history of undergoing colorectal polypectomy. All adult patients visiting the Yokohama City University hospital or affiliated hospitals for polypectomy shall be recruited for the study. Eligible patients will then be allocated randomly into either one of two groups: the metformin group and the placebo group. Patients in the metformin group shall receive oral metformin at 250 mg per day, and those in the placebo group shall receive an oral placebo tablet. At the end of 1 year of administration of metformin/placebo, colonoscopy will be performed to evaluate the polyp formation.</p> <p>Discussion</p> <p>This is the first study proposed to explore the effect of metformin against colorectal polyp formation. Metformin activates AMPK, which inhibits the mammalian target of rapamycin (mTOR) pathway. The mTOR pathway plays an important role in the cellular protein translational machinery and cell proliferation. Patients with type 2 diabetes taking under treatment with metformin have been reported to be at a lower risk of cancer development than those not taking under treatment with metformin. We showed in a previous study that metformin suppressed the formation of human colorectal ACF. We therefore decided to conduct a study to determine whether metformin might suppress the formation of human colorectal polyps.</p> <p>Trial registration</p> <p>This trial has been registered in the University hospital Medical Information Network (UMIN) Clinical Trials Registry as <a href="http://www.clinicaltrials.gov/ct2/show/UMIN000006254">UMIN000006254</a></p

    Understanding the benefit of metformin use in cancer treatment

    Get PDF
    Biguanides have been developed for the treatment of hyperglycemia and type 2 diabetes. Recently, metformin, the most widely prescribed biguanide, has emerged as a potential anticancer agent. Epidemiological, preclinical and clinical evidence supports the use of metformin as a cancer therapeutic. The ability of metformin to lower circulating insulin may be particularly important for the treatment of cancers known to be associated with hyperinsulinemia, such as those of the breast and colon. Moreover, metformin may exhibit direct inhibitory effects on cancer cells by inhibiting mammalian target of rapamycin (mTOR) signaling and protein synthesis. The evidence supporting a role for metformin in cancer therapy and its potential molecular mechanisms of action are discussed

    The role of Herceptin in early breast cancer

    Get PDF
    Herceptin is widely regarded as the most important development in the treatment of breast cancer since Tamoxifen and the development of the multidisciplinary team (MDT). It is particularly exciting from an oncological polint of view as it represents success in the emerging field of specific targeted therapies to specific molecular abnormalities in tumour cells. This review will focus on the nature of the Her2 overexpression and the role of herceptin in the treatment of early breast cancer

    Lack of EGF receptor contributes to drug sensitivity of human germline cells

    Get PDF
    Germline mutations have been associated with generation of various types of tumour. In this study, we investigated genetic alteration of germline tumours that affect the drug sensitivity of cells. Although all germline tumour cells we tested were hypersensitive to DNA-damaging drugs, no significant alteration was observed in their DNA repair activity or the expression of DNA repair proteins. In contrast, germline tumours expressed very low level of epidermal growth factor receptor (EGFR) compared to drug-resistant ovarian cancer cells. An immunohistochemical analysis indicated that most of the primary germline tumours we tested expressed very low level of EGFR. In accordance with this, overexpression of EGFR in germline tumour cells showed an increase in drug resistance, suggesting that a lack of EGFR, at least in part, contributes to the drug sensitivity of germline tumours

    Femara® and the future: tailoring treatment and combination therapies with Femara

    Get PDF
    Long-term estrogen deprivation treatment for breast cancer can, in some patients, lead to the activation of alternate cellular pathways, resulting in the re-emergence of the disease. This is a distressing scenario for oncologists and patients, but recent intensive molecular and biochemical studies are beginning to unravel these pathways, revealing opportunities for new targeted treatments. Far from making present therapies redundant, these new discoveries open the door to novel combination therapies that promise to provide enhanced efficacy or overcome treatment resistance. Letrozole, one of the most potent aromatase inhibitors, is the ideal candidate for combination therapy; indeed, it is one of the most intensively studied aromatase inhibitors in the evolving combinatorial setting. Complementary to the use of combination therapy is the development of molecular tools to identify patients who will benefit the most from these new treatments. Microarray gene profiling studies, designed to detect letrozole-responsive targets, are currently under way to understand how the use of the drug can be tailored more efficiently to specific patient needs
    corecore