13 research outputs found

    Complete Genome Sequences of Escherichia coli Strains 1303 and ECC-1470 Isolated from Bovine Mastitis

    Full text link
    Escherichia coli is the leading causative agent of acute bovine mastitis. Here, we report the complete genome sequence of E. coli O70:H32 strain 1303, isolated from an acute case of bovine mastitis, and E. coli Ont:Hnt strain ECC-1470, isolated from a persistent infection

    Specific Gene Expression Responses to Parasite Genotypes Reveal Redundancy of Innate Immunity in Vertebrates

    Get PDF
    Vertebrate innate immunity is the first line of defense against an invading pathogen and has long been assumed to be largely unspecific with respect to parasite/pathogen species. However, recent phenotypic evidence suggests that immunogenetic variation, i.e. allelic variability in genes associated with the immune system, results in host-parasite genotype-by-genotype interactions and thus specific innate immune responses. Immunogenetic variation is common in all vertebrate taxa and this reflects an effective immunological function in complex environments. However, the underlying variability in host gene expression patterns as response of innate immunity to within-species genetic diversity of macroparasites in vertebrates is unknown. We hypothesized that intra-specific variation among parasite genotypes must be reflected in host gene expression patterns. Here we used high-throughput RNA-sequencing to examine the effect of parasite genotypes on gene expression patterns of a vertebrate host, the three-spined stickleback (Gasterosteus aculeatus). By infecting naïve fish with distinct trematode genotypes of the species Diplostomum pseudospathaceum we show that gene activity of innate immunity in three-spined sticklebacks depended on the identity of an infecting macroparasite genotype. In addition to a suite of genes indicative for a general response against the trematode we also find parasite-strain specific gene expression, in particular in the complement system genes, despite similar infection rates of single clone treatments. The observed discrepancy between infection rates and gene expression indicates the presence of alternative pathways which execute similar functions. This suggests that the innate immune system can induce redundant responses specific to parasite genotypes

    'ADAMTS12', a new candidate gene for pediatric stroke

    Full text link
    We recently reported a family-based genome wide association study (GWAS) for pediatric stroke pointing our attention to two significantly associated genes of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family 'ADAMTS2' (rs469568, p = 8x10-6) and 'ADAMTS12' (rs1364044, p = 2.9x10-6). To further investigate these candidate genes, we applied a targeted resequencing approach on 48 discordant sib-pairs for pediatric stroke followed by genotyping of the detected non-synonymous variants in the full cohort of 270 offspring trios and subsequent fine mapping analysis. We identified eight non-synonymous SNPs in 'ADAMTS2' and six in 'ADAMTS12' potentially influencing the respective protein function. These variants were genotyped within a cohort of 270 affected offspring trios, association analysis revealed the 'ADAMTS12' variant rs77581578 to be significantly under-transmitted (p = 6.26x10-3) to pediatric stroke patients. The finding was validated in a pediatric venous thromboembolism (VTE) cohort of 189 affected trios. Subsequent haplotype analysis of 'ADAMTS12' detected a significantly associated haplotype comprising the originally identified GWAS variant. Several ADAMTS genes such as 'ADAMTS13' are involved in thromboembolic disease process. Here, we provide further evidence for 'ADAMTS12' to likely play a role in pediatric stroke. Further functional studies are warranted to assess the functional role of ADAMTS12 in the pathogenesis of stroke

    Phenotypic and Genotypic Characterization of 'Escherichia coli' Causing Urinary Tract Infections in Kidney-Transplanted Patients

    Full text link
    Urinary tract infection (UTI), frequently caused by uropathogenic Escherichia coli (UPEC), is the most common infection after kidney transplantation (KTx). Untreated, it can lead to urosepsis and impairment of the graft function. We questioned whether the UPEC isolated from KTx patients differed from the UPEC of non-KTx patients. Therefore, we determined the genome sequences of 182 UPEC isolates from KTx and control patients in a large German university clinic and pheno- and genotypically compared these two isolated groups. Resistance to the β-lactams, trimethoprim or trimethoprim/sulfamethoxazole was significantly higher among UPEC from KTx than from control patients, whereas both the isolated groups were highly susceptible to fosfomycin. Accordingly, the gene content conferring resistance to β-lactams or trimethoprim, but also to aminoglycosides, was significantly higher in KTx than in control UPEC isolates. E. coli isolates from KTx patients more frequently presented with uncommon UPEC phylogroups expressing higher numbers of plasmid replicons, but interestingly, less UPEC virulence-associated genes than the control group. We conclude that there is no defining subset of virulence traits for UPEC from KTx patients. The clinical history and immunocompromised status of KTx patients enables E. coli strains with low uropathogenic potential, but with increased antibiotic resistance to cause UTIs

    A genetic variant alters the secondary structure of the lncRNA H19 and is associated with dilated cardiomyopathy

    No full text
    lncRNAs are at the core of many regulatory processes and have also been recognized to be involved in various complex diseases. They affect gene regulation through direct interactions with RNA, DNA or proteins. Accordingly, lncRNA structure is likely to be essential for their regulatory function. Point mutations, which manifest as SNPs (single nucleotide polymorphisms) in genome screens, can substantially alter their function and, subsequently, the expression of their downstream regulated genes. To test the effect of SNPs on structure, we investigated lncRNAs associated with dilated cardiomyopathy. Among 322 human candidate lncRNAs, we demonstrate first the significant association of an SNP located in lncRNA H19 using data from 1084 diseased and 751 control patients. H19 is generally highly expressed in the heart, with a complex expression pattern during heart development. Next, we used MFE (minimum free energy) folding to demonstrate a significant refolding in the secondary structure of this 861 nt long lncRNA. Since MFE folding may overlook the importance of sub-optimal structures, we showed that this refolding also manifests in the overall Boltzmann structure ensemble. There, the composition of structures is tremendously affected in their thermodynamic probabilities through the genetic variant. Finally, we confirmed these results experimentally, using SHAPE-Seq, corroborating that SNPs affecting such structures may explain hidden genetic variance not accounted for through genome wide association studies. Our results suggest that structural changes in lncRNAs, and lncRNA H19 in particular, affect regulatory processes and represent optimal targets for further in-depth studies probing their molecular interactions
    corecore