165 research outputs found

    Neurophysiological effects of sleep deprivation in healthy adults, a pilot study

    Get PDF
    Total sleep deprivation (TSD) may induce fatigue, neurocognitive slowing and mood changes, which are partly compensated by stress regulating brain systems, resulting in altered dopamine and cortisol levels in order to stay awake if needed. These systems, however, have never been studied in concert. At baseline, after a regular night of sleep, and the next morning after TSD, 12 healthy subjects performed a semantic affective classification functional magnetic resonance imaging (fMRI) task, followed by a [11C]raclopride positron emission tomography (PET) scan. Saliva cortisol levels were acquired at 7 time points during both days. Affective symptoms were measured using Beck Depression Inventory (BDI), Spielberger State Trait Anxiety Index (STAI) and visual analogue scales. After TSD, perceived energy levels, concentration, and speed of thought decreased significantly, whereas mood did not. During fMRI, response speed decreased for neutral words and positive targets, and accuracy decreased trendwise for neutral words and for positive targets with a negative distracter. Following TSD, processing of positive words was associated with increased left dorsolateral prefrontal activation. Processing of emotional words in general was associated with increased insular activity, whereas contrasting positive vs. negative words showed subthreshold increased activation in the (para)hippocampal area. Cortisol secretion was significantly lower after TSD. Decreased voxel-by-voxel [11 C]raclopride binding potential (BPND) was observed in left caudate. TSD induces widespread cognitive, neurophysiologic and endocrine changes in healthy adults, characterized by reduced cognitive functioning, despite increased regional brain activity

    Aerobic capacity and disease activity in children, adolescents and young adults with juvenile idiopathic arthritis (JIA)

    Get PDF
    Background: As patients with juvenile idiopathic arthritis (JIA) progress into adulthood, long-term outcome is determined by disease activity, physical and psychosocial development. Decreased aerobic capacity may play a critical role in health-related outcomes in JIA, since it has been linked with cardiovascular morbidity and mortality in late adulthood. The objectives of the current study are to examine the aerobic capacity and its relation to parameters of disease activity in children, adolescents and young adults with JIA.Methods: Sixty-three patients with JIA (aged 10-27 years) were cross sectional studied regarding their aerobic capacity and correlations were made to demographic, disease-related variables, and medication utilization. in a cross-sectional study group of 63 patients of all subtypes. Patients were divided in three age groups, 10-13 years; 14-17 years and 18-27 years.Results: Reduced aerobic capacity is found in clinical remission as well as active disease in all subtypes and all age groups. Aerobic capacity is more impaired in active disease shown by DAS 28, JADAS 27, ESR and serum thrombocyte counts. Lower haemoglobin has a negative impact. Long-term used medication including methotrexate and corticosteroids didn't influence outcome. There is no association with current sports participation.Conclusion: Reduced aerobic capacity is present in adolescents and young adults with JIA, both in active disease and in patients with remission. Measures of aerobic capacity may serve as important outcome measure in JIA

    Proposed diagnostic criteria for classical CMML, CMML variants and pre-CMML conditions

    Get PDF
    Chronic myelomonocytic leukemia (CMML) is a myeloid neoplasm characterized by dysplasia, abnormal production and accumulation of monocytic cells and an elevated risk to transform into acute leukemia. Over the past two decades, our knowledge about the pathogenesis and molecular mechanisms in CMML has increased substantially. In parallel, better diagnostic criteria and therapeutic strategies have been developed. However, many questions remain regarding prognostication and optimal therapy. In addition, there is a need to define potential pre-phases of CMML and special CMML variants, and to separate these entities from each other and from conditions mimicking CMML. To address these unmet needs, an international consensus group met in a Working Conference in August 2018 and discussed open questions and issues around CMML, its variants, and pre-CMML conditions. The outcomes of this meeting are summarized herein and include diagnostic criteria and a proposed classification of pre-CMML conditions as well as refined minimal diagnostic criteria for classical CMML and special CMML variants, including oligomonocytic CMML and CMML associated with systemic mastocytosis. Moreover, we propose diagnostic standards and tools to delineate between normal, pre-CMML and CMML entities. These criteria and standards should facilitate diagnostic and prognostic evaluations in daily practice and clinical studies in applied hematology

    New insights into the genetic etiology of Alzheimer's disease and related dementias.

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
    • 

    corecore