96 research outputs found

    Functional effects of schizophrenia-linked genetic variants on intrinsic single-neuron excitability: A modeling study

    Full text link
    Background: Recent genome-wide association studies (GWAS) have identified a large number of genetic risk factors for schizophrenia (SCZ) featuring ion channels and calcium transporters. For some of these risk factors, independent prior investigations have examined the effects of genetic alterations on the cellular electrical excitability and calcium homeostasis. In the present proof-of-concept study, we harnessed these experimental results for modeling of computational properties on layer V cortical pyramidal cell and identify possible common alterations in behavior across SCZ-related genes. Methods: We applied a biophysically detailed multi-compartmental model to study the excitability of a layer V pyramidal cell. We reviewed the literature on functional genomics for variants of genes associated with SCZ, and used changes in neuron model parameters to represent the effects of these variants. Results: We present and apply a framework for examining the effects of subtle single nucleotide polymorphisms in ion channel and Ca2+ transporter-encoding genes on neuron excitability. Our analysis indicates that most of the considered SCZ- related genetic variants affect the spiking behavior and intracellular calcium dynamics resulting from summation of inputs across the dendritic tree. Conclusions: Our results suggest that alteration in the ability of a single neuron to integrate the inputs and scale its excitability may constitute a fundamental mechanistic contributor to mental disease, alongside with the previously proposed deficits in synaptic communication and network behavior

    Cross-tissue eQTL enrichment of associations in schizophrenia.

    Get PDF
    The genome-wide association study of the Psychiatric Genomics Consortium identified over one hundred schizophrenia susceptibility loci. The number of non-coding variants discovered suggests that gene regulation could mediate the effect of these variants on disease. Expression quantitative trait loci (eQTLs) contribute to variation in levels of mRNA. Given the co-occurrence of schizophrenia and several traits not involving the central nervous system (CNS), we investigated the enrichment of schizophrenia associations among eQTLs for four non-CNS tissues: adipose tissue, epidermal tissue, lymphoblastoid cells and blood. Significant enrichment was seen in eQTLs of all tissues: adipose (β = 0.18, p = 8.8 × 10−06), epidermal (β = 0.12, p = 3.1 × 10−04), lymphoblastoid (β = 0.19, p = 6.2 × 10−08) and blood (β = 0.19, p = 6.4 × 10−06). For comparison, we looked for enrichment of association with traits of known relevance to one or more of these tissues (body mass index, height, rheumatoid arthritis, systolic blood pressure and type-II diabetes) and found that schizophrenia enrichment was of similar scale to that observed when studying diseases in the context of a more likely causal tissue. To further investigate tissue specificity, we looked for differential enrichment of eQTLs with relevant Roadmap affiliation (enhancers and promoters) and varying distance from the transcription start site. Neither factor significantly contributed to the enrichment, suggesting that this is equally distributed in tissue-specific and cross-tissue regulatory elements. Our analyses suggest that functional correlates of schizophrenia risk are prevalent in non-CNS tissues. This could be because of pleiotropy or the effectiveness of variants affecting expression in different contexts. This suggests the utility of large, single-tissue eQTL experiments to increase eQTL discovery power in the study of schizophrenia, in addition to smaller, multiple-tissue approaches. Our results conform to the notion that schizophrenia is a systemic disorder involving many tissues

    Estimating effect sizes and expected replication probabilities from GWAS summary statistics

    Get PDF
    Genome-wide Association Studies (GWAS) result in millions of summary statistics (“z-scores”) for single nucleotide polymorphism (SNP) associations with phenotypes. These rich datasets afford deep insights into the nature and extent of genetic contributions to complex phenotypes such as psychiatric disorders, which are understood to have substantial genetic components that arise from very large numbers of SNPs. The complexity of the datasets, however, poses a significant challenge to maximizing their utility. This is reflected in a need for better understanding the landscape of z-scores, as such knowledge would enhance causal SNP and gene discovery, help elucidate mechanistic pathways, and inform future study design. Here we present a parsimonious methodology for modeling effect sizes and replication probabilities, relying only on summary statistics from GWAS substudies, and a scheme allowing for direct empirical validation. We show that modeling z-scores as a mixture of Gaussians is conceptually appropriate, in particular taking into account ubiquitous non-null effects that are likely in the datasets due to weak linkage disequilibrium with causal SNPs. The four-parameter model allows for estimating the degree of polygenicity of the phenotype and predicting the proportion of chip heritability explainable by genome-wide significant SNPs in future studies with larger sample sizes. We apply the model to recent GWAS of schizophrenia (N = 82,315) and putamen volume (N = 12,596), with approximately 9.3 million SNP z-scores in both cases. We show that, over a broad range of z-scores and sample sizes, the model accurately predicts expectation estimates of true effect sizes and replication probabilities in multistage GWAS designs. We assess the degree to which effect sizes are over-estimated when based on linear-regression association coefficients. We estimate the polygenicity of schizophrenia to be 0.037 and the putamen to be 0.001, while the respective sample sizes required to approach fully explaining the chip heritability are 106 and 105. The model can be extended to incorporate prior knowledge such as pleiotropy and SNP annotation. The current findings suggest that the model is applicable to a broad array of complex phenotypes and will enhance understanding of their genetic architectures

    Identification of shared genetic variants between schizophrenia and lung cancer.

    Get PDF
    Epidemiology studies suggest associations between schizophrenia and cancer. However, the underlying genetic mechanisms are not well understood, and difficult to identify from epidemiological data. We investigated if there is a shared genetic architecture between schizophrenia and cancer, with the aim to identify specific overlapping genetic loci. First, we performed genome-wide enrichment analysis and second, we analyzed specific loci jointly associated with schizophrenia and cancer by the conjunction false discovery rate. We analyzed the largest genome-wide association studies of schizophrenia and lung, breast, prostate, ovary, and colon-rectum cancer including more than 220,000 subjects, and included genetic association with smoking behavior. Polygenic enrichment of associations with lung cancer was observed in schizophrenia, and weak enrichment for the remaining cancer sites. After excluding the major histocompatibility complex region, we identified three independent loci jointly associated with schizophrenia and lung cancer. The strongest association included nicotinic acetylcholine receptors and is an established pleiotropic locus shared between lung cancer and smoking. The two other loci were independent of genetic association with smoking. Functional analysis identified downstream pleiotropic effects on epigenetics and gene-expression in lung and brain tissue. These findings suggest that genetic factors may explain partly the observed epidemiological association of lung cancer and schizophrenia

    Leveraging genomic annotations and pleiotropic enrichment for improved replication rates in schizophrenia GWAS

    Get PDF
    Most of the genetic architecture of schizophrenia (SCZ) has not yet been identified. Here, we apply a novel statistical algorithm called Covariate-Modulated Mixture Modeling (CM3), which incorporates auxiliary information (heterozygosity, total linkage disequilibrium, genomic annotations, pleiotropy) for each single nucleotide polymorphism (SNP) to enable more accurate estimation of replication probabilities, conditional on the observed test statistic (“z-score”) of the SNP. We use a multiple logistic regression on z-scores to combine information from auxiliary information to derive a “relative enrichment score” for each SNP. For each stratum of these relative enrichment scores, we obtain nonparametric estimates of posterior expected test statistics and replication probabilities as a function of discovery z-scores, using a resampling-based approach that repeatedly and randomly partitions meta-analysis sub-studies into training and replication samples. We fit a scale mixture of two Gaussians model to each stratum, obtaining parameter estimates that minimize the sum of squared differences of the scale-mixture model with the stratified nonparametric estimates. We apply this approach to the recent genome-wide association study (GWAS) of SCZ (n = 82,315), obtaining a good fit between the model-based and observed effect sizes and replication probabilities. We observed that SNPs with low enrichment scores replicate with a lower probability than SNPs with high enrichment scores even when both they are genome-wide significant (p < 5x10-8). There were 693 and 219 independent loci with model-based replication rates ≥80% and ≥90%, respectively. Compared to analyses not incorporating relative enrichment scores, CM3 increased out-of-sample yield for SNPs that replicate at a given rate. This demonstrates that replication probabilities can be more accurately estimated using prior enrichment information with CM3

    Enrichment of genetic markers of recent human evolution in educational and cognitive traits

    Get PDF
    Higher cognitive functions are regarded as one of the main distinctive traits of humans. Evidence for the cognitive evolution of human beings is mainly based on fossil records of an expanding cranium and an increasing complexity of material culture artefacts. However, the molecular genetic factors involved in the evolution are still relatively unexplored. Here, we investigated whether genomic regions that underwent positive selection in humans after divergence from Neanderthals are enriched for genetic association with phenotypes related to cognitive functions. We used genome wide association data from a study of college completion (N = 111,114), one of educational attainment (N = 293,623) and two different studies of general cognitive ability (N = 269,867 and 53,949). We found nominally significant polygenic enrichment of associations with college completion (p = 0.025), educational attainment (p = 0.043) and general cognitive ability (p = 0.015 and 0.025, respectively), suggesting that variants influencing these phenotypes are more prevalent in evolutionarily salient regions. The enrichment remained significant after controlling for other known genetic enrichment factors, and for affiliation to genes highly expressed in the brain. These findings support the notion that phenotypes related to higher order cognitive skills typical of humans have a recent genetic component that originated after the separation of the human and Neanderthal lineages

    Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score

    Get PDF
    Background Identifying individuals at risk for developing Alzheimer disease (AD) is of utmost importance. Although genetic studies have identified AD-associated SNPs in APOE and other genes, genetic information has not been integrated into an epidemiological framework for risk prediction. Methods and findings Using genotype data from 17,008 AD cases and 37,154 controls from the International Genomics of Alzheimer’s Project (IGAP Stage 1), we identified AD-associated SNPs (at p < 10−5 ). We then integrated these AD-associated SNPs into a Cox proportional hazard model using genotype data from a subset of 6,409 AD patients and 9,386 older controls from Phase 1 of the Alzheimer’s Disease Genetics Consortium (ADGC), providing a polygenic hazard score (PHS) for each participant. By combining population-based incidence rates and the genotype-derived PHS for each individual, we derived estimates of instantaneous risk for developing AD, based on genotype and age, and tested replication in multiple independent cohorts (ADGC Phase 2, National Institute on Aging Alzheimer’s Disease Center [NIA ADC], and Alzheimer’s Disease Neuroimaging Initiative [ADNI], total n = 20,680). Within the ADGC Phase 1 cohort, individuals in the highest PHS quartile developed AD at a considerably lower age and had the highest yearly AD incidence rate. Among APOE ε3/3 individuals, the PHS modified expected age of AD onset by more than 10 y between the lowest and highest deciles (hazard ratio 3.34, 95% CI 2.62–4.24, p = 1.0 × 10−22). In independent cohorts, the PHS strongly predicted empirical age of AD onset (ADGC Phase 2, r = 0.90, p = 1.1 × 10−26) and longitudinal progression from normal aging to AD (NIA ADC, Cochran–Armitage trend test, p = 1.5 × 10−10), and was associated with neuropathology (NIA ADC, Braak stage of neurofibrillary tangles, p = 3.9 × 10−6 , and Consortium to Establish a Registry for Alzheimer’s Disease score for neuritic plaques, p = 6.8 × 10−6 ) and in vivo markers of AD neurodegeneration (ADNI, volume loss within the entorhinal cortex, p = 6.3 × 10−6 , and hippocampus, p = 7.9 × 10−5 ). Additional prospective validation of these results in non-US, non-white, and prospective community-based cohorts is necessary before clinical use. Conclusions We have developed a PHS for quantifying individual differences in age-specific genetic risk for AD. Within the cohorts studied here, polygenic architecture plays an important role in modifying AD risk beyond APOE. With thorough validation, quantification of inherited genetic variation may prove useful for stratifying AD risk and as an enrichment strategy in therapeutic trials

    Polygenic overlap between C-reactive protein, plasma lipids, and Alzheimer disease

    Get PDF
    Background—Epidemiological findings suggest a relationship between Alzheimer disease (AD), inflammation, and dyslipidemia, although the nature of this relationship is not well understood. We investigated whether this phenotypic association arises from a shared genetic basis. Methods and Results—Using summary statistics (P values and odds ratios) from genome-wide association studies of >200 000 individuals, we investigated overlap in single-nucleotide polymorphisms associated with clinically diagnosed AD and C-reactive protein (CRP), triglycerides, and high- and low-density lipoprotein levels. We found up to 50-fold enrichment of AD single-nucleotide polymorphisms for different levels of association with C-reactive protein, low-density lipoprotein, high-density lipoprotein, and triglyceride single-nucleotide polymorphisms using a false discovery rate threshold <0.05. By conditioning on polymorphisms associated with the 4 phenotypes, we identified 55 loci associated with increased AD risk. We then conducted a meta-analysis of these 55 variants across 4 independent AD cohorts (total: n=29 054 AD cases and 114 824 healthy controls) and discovered 2 genome-wide significant variants on chromosome 4 (rs13113697; closest gene, HS3ST1; odds ratio=1.07; 95% confidence interval=1.05–1.11; P=2.86×10−8) and chromosome 10 (rs7920721; closest gene, ECHDC3; odds ratio=1.07; 95% confidence interval=1.04–1.11; P=3.38×10−8). We also found that gene expression of HS3ST1 and ECHDC3 was altered in AD brains compared with control brains. Conclusions—We demonstrate genetic overlap between AD, C-reactive protein, and plasma lipids. By conditioning on the genetic association with the cardiovascular phenotypes, we identify novel AD susceptibility loci, including 2 genome-wide significant variants conferring increased risk for AD.acceptedVersio
    corecore