27 research outputs found

    Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs

    Get PDF
    Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases

    Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia

    Get PDF
    Candidaemia is the fourth most common cause of bloodstream infection, with a high mortality rate of up to 40%. Identification of host genetic factors that confer susceptibility to candidaemia may aid in designing adjunctive immunotherapeutic strategies. Here we hypothesize that variation in immune genes may predispose to candidaemia. We analyse 118,989 single-nucleotide polymorphisms (SNPs) across 186 loci known to be associated with immune-mediated diseases in the largest candidaemia cohort to date of 217 patients of European ancestry and a group of 11,920 controls. We validate the significant associations by comparison with a disease-matched control group. We observe significant association between candidaemia and SNPs in the CD58 (P = 1.97 x 10(-11); odds ratio (OR) = 4.68), LCE4A-C1orf68 (P = 1.98 x 10(-10); OR = 4.25) and TAGAP (P = 1.84 x 10(-8); OR = 2.96) loci. Individuals carrying two or more risk alleles have an increased risk for candidaemia of 19.4-fold compared with individuals carrying no risk allele. We identify three novel genetic risk factors for candidaemia, which we subsequently validate for their role in antifungal host defence

    Spinocerebellar ataxia:miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration

    Get PDF
    Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs

    Long Non-Coding RNAs Involved in Progression of Non-Alcoholic Fatty Liver Disease to Steatohepatitis

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is characterized by different stages varying from benign fat accumulation to non-alcoholic steatohepatitis (NASH) that may progress to cirrhosis and liver cancer. In recent years, a regulatory role of long non-coding RNAs (lncRNAs) in NAFLD has emerged. Therefore, we aimed to characterize the still poorly understood lncRNA contribution to disease progression. Transcriptome analysis in 60 human liver samples with various degrees of NAFLD/NASH was combined with a functional genomics experiment in an in vitro model where we exposed HepG2 cells to free fatty acids (FFA) to induce steatosis, then stimulated them with tumor necrosis factor alpha (TNF alpha) to mimic inflammation. Bioinformatics analyses provided a functional prediction of novel lncRNAs. We further functionally characterized the involvement of one novel lncRNA in the nuclear-factor-kappa B (NF-kappa B) signaling pathway by its silencing in Hepatoma G2 (HepG2) cells. We identified 730 protein-coding genes and 18 lncRNAs that responded to FFA/TNF alpha and associated with human NASH phenotypes with consistent effect direction, with most being linked to inflammation. One novel intergenic lncRNA, designated lncTNF, was 20-fold up-regulated upon TNF alpha stimulation in HepG2 cells and positively correlated with lobular inflammation in human liver samples. Silencing lncTNF in HepG2 cells reduced NF-kappa B activity and suppressed expression of the NF-kappa B target genes A20 and NFKBIA. The lncTNF we identified in the NF-kappa B signaling pathway may represent a novel target for controlling liver inflammation

    Long Non-Coding RNAs Involved in Progression of Non-Alcoholic Fatty Liver Disease to Steatohepatitis

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is characterized by different stages varying from benign fat accumulation to non-alcoholic steatohepatitis (NASH) that may progress to cirrhosis and liver cancer. In recent years, a regulatory role of long non-coding RNAs (lncRNAs) in NAFLD has emerged. Therefore, we aimed to characterize the still poorly understood lncRNA contribution to disease progression. Transcriptome analysis in 60 human liver samples with various degrees of NAFLD/NASH was combined with a functional genomics experiment in an in vitro model where we exposed HepG2 cells to free fatty acids (FFA) to induce steatosis, then stimulated them with tumor necrosis factor alpha (TNFα) to mimic inflammation. Bioinformatics analyses provided a functional prediction of novel lncRNAs. We further functionally characterized the involvement of one novel lncRNA in the nuclear-factor-kappa B (NF-κB) signaling pathway by its silencing in Hepatoma G2 (HepG2) cells. We identified 730 protein-coding genes and 18 lncRNAs that responded to FFA/TNFα and associated with human NASH phenotypes with consistent effect direction, with most being linked to inflammation. One novel intergenic lncRNA, designated lncTNF, was 20-fold up-regulated upon TNFα stimulation in HepG2 cells and positively correlated with lobular inflammation in human liver samples. Silencing lncTNF in HepG2 cells reduced NF-κB activity and suppressed expression of the NF-κB target genes A20 and NFKBIA. The lncTNF we identified in the NF-κB signaling pathway may represent a novel target for controlling liver inflammation

    A Genome-Wide Functional Genomics Approach Identifies Susceptibility Pathways to Fungal Bloodstream Infection in Humans

    Get PDF
    Candidemia, one of the most common causes of fungal bloodstream infection, leads to mortality rates up to 40% in affected patients. Understanding genetic mechanisms for differential susceptibility to candidemia may aid in designing host-directed therapies. We performed the first genome-wide association study on candidemia, and we integrated these data with variants that affect cytokines in different cellular systems stimulated with Candida albicans. We observed strong association between candidemia and a variant, rs8028958, that significantly affects the expression levels of PLA2G4B in blood. We found that up to 35% of the susceptibility loci affect in vitro cytokine production in response to Candida. Furthermore, potential causal genes located within these loci are enriched for lipid and arachidonic acid metabolism. Using an independent cohort, we also showed that the numbers of risk alleles at these loci are negatively correlated with reactive oxygen species and interleukin-6 levels in response to Candida. Finally, there was a significant correlation between susceptibility and allelic scores based on 16 independent candidemia-associated single-nucleotide polymorphisms that affect monocyte-derived cytokines, but not with T cell-derived cytokines. Our results prioritize the disturbed lipid homeostasis and oxidative stress as potential mechanisms that affect monocyte-derived cytokines to influence susceptibility to candidemia

    THEMIS and PTPRK in celiac intestinal mucosa: Coexpression in disease and after in vitro gliadin challenge

    Get PDF
    Celiac disease (CD) is an immune mediated, polygenic disorder, where HLA-DQ2/DQ8 alleles contribute around 35% to genetic risk, but several other genes are also involved. Genome-wide association studies (GWASs) and the more recent immunochip genotyping projects have fine-mapped 39 regions of genetic susceptibility to the disease, most of which harbor candidate genes that could participate in this disease process. We focused our attention to the GWAS peak on chr6: 127.99–128.38 Mb, a region including two genes, thymocyte-expressed molecule involved in selection (THEMIS) and protein tyrosine phosphatase, receptor type, kappa (PTPRK), both of which have immune-related functions. The aim of this work was to evaluate the expression levels of these two genes in duodenal mucosa of active and treated CD patients and in controls, and to determine whether SNPs (rs802734, rs55743914, rs72975916, rs10484718 and rs9491896) associated with CD have any influence on gene expression. THEMIS showed higher expression in active CD compared with treated patients and controls, whereas PTPRK showed lower expression. Our study confirmed the association of this region with CD in our population, but only the genotype of rs802734 showed some influence in the expression of THEMIS. On the other hand, we found a significant positive correlation between THEMIS and PTPRK mRNA levels in CD patients but not in controls. Our results suggest a possible role for both candidate genes in CD pathogenesis and the existence of complex, regulatory relationships that reside in the vast non-coding, functional intergenic regions of the genome. Further investigation is needed to clarify the impact of the disease-associated SNPs on gene function.Fil: Bondar, Constanza María. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Laboratorio de Investigaciones del Sistema Inmune; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Plaza Izurieta, Leticia. Universidad del País Vasco; EspañaFil: Fernandez Jimenez, Nora. Universidad del País Vasco; EspañaFil: Irastorza, Iñaki. Hospital Universitario Cruces; EspañaFil: Withoff, Sebo. University of Groningen; Países BajosFil: Grupo CEGEC. No especifica;Fil: Wijmenga, Cisca. University of Groningen; Países BajosFil: Chirdo, Fernando Gabriel. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Laboratorio de Investigaciones del Sistema Inmune; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Bilbao, Jose Ramon. Universidad del País Vasco; Españ
    corecore