23 research outputs found

    TLR Tolerance Reduces IFN-Alpha Production Despite Plasmacytoid Dendritic Cell Expansion and Anti-Nuclear Antibodies in NZB Bicongenic Mice

    Get PDF
    Genetic loci on New Zealand Black (NZB) chromosomes 1 and 13 play a significant role in the development of lupus-like autoimmune disease. We have previously shown that C57BL/6 (B6) congenic mice with homozygous NZB chromosome 1 (B6.NZBc1) or 13 (B6.NZBc13) intervals develop anti-nuclear antibodies and mild glomerulonephritis (GN), together with increased T and B cell activation. Here, we produced B6.NZBc1c13 bicongenic mice with both intervals, and demonstrate several novel phenotypes including: marked plasmacytoid and myeloid dendritic cell expansion, and elevated IgA production. Despite these changes, only minor increases in anti-nuclear antibody production were seen, and the severity of GN was reduced as compared to B6.NZBc1 mice. Although bicongenic mice had increased levels of baff and tnf-α mRNA in their spleens, the levels of IFN-α-induced gene expression were reduced. Splenocytes from bicongenic mice also demonstrated reduced secretion of IFN-α following TLR stimulation in vitro. This reduction was not due to inhibition by TNF-α and IL-10, or regulation by other cellular populations. Because pDC in bicongenic mice are chronically exposed to nuclear antigen-containing immune complexes in vivo, we examined whether repeated stimulation of mouse pDC with TLR ligands leads to impaired IFN-α production, a phenomenon termed TLR tolerance. Bone marrow pDC from both B6 and bicongenic mice demonstrated markedly inhibited secretion of IFN-α following repeated stimulation with a TLR9 ligand. Our findings suggest that the expansion of pDC and production of anti-nuclear antibodies need not be associated with increased IFN-α production and severe kidney disease, revealing additional complexity in the regulation of autoimmunity in systemic lupus erythematosus

    B Cell Activating Factor (BAFF) and T Cells Cooperate to Breach B Cell Tolerance in Lupus-Prone New Zealand Black (NZB) Mice

    Get PDF
    The presence of autoantibodies in New Zealand Black (NZB) mice suggests a B cell tolerance defect however the nature of this defect is unknown. To determine whether defects in B cell anergy contribute to the autoimmune phenotype in NZB mice, soluble hen egg lysozyme (sHEL) and anti-HEL Ig transgenes were bred onto the NZB background to generate double transgenic (dTg) mice. NZB dTg mice had elevated levels of anti-HEL antibodies, despite apparently normal B cell functional anergy in-vitro. NZB dTg B cells also demonstrated increased survival and abnormal entry into the follicular compartment following transfer into sHEL mice. Since this process is dependent on BAFF, BAFF serum and mRNA levels were assessed and were found to be significantly elevated in NZB dTg mice. Treatment of NZB sHEL recipient mice with TACI-Ig reduced NZB dTg B cell survival following adoptive transfer, confirming the role of BAFF in this process. Although NZB mice had modestly elevated BAFF, the enhanced NZB B cell survival response appeared to result from an altered response to BAFF. In contrast, T cell blockade had a minimal effect on B cell survival, but inhibited anti-HEL antibody production. The findings suggest that the modest BAFF elevations in NZB mice are sufficient to perturb B cell tolerance, particularly when acting in concert with B cell functional abnormalities and T cell help

    Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus.

    Get PDF
    Systemic lupus erythematosus (SLE) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry, constituting a new GWAS, a meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including ten new associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n = 16) of transcription factors among SLE susceptibility genes. This finding supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE

    Spatial and temporal variability in nutrient concentrations in Liverpool Bay, a temperate latitude region of freshwater influence

    No full text
    This paper presents data for the temporal and spatial distribution of nutrients in Liverpool Bay between 2003 and 2009 and an analysis of inputs of nutrients from the major rivers. The spatial distribution of winter nutrient concentrations are controlled by the region of freshwater influence (ROFI) in Liverpool Bay through the mixing of riverine freshwater and Irish Sea water, with strong linear relationships between nutrient concentration and salinity between December and February. The location of highest spring and summer phytoplankton biomass reflects the nutrient distributions as controlled by the ROFI. Analysis of 7 years of data showed that the seasonal cycle of winter maximum nutrient concentrations in February and drawdown in April/May is a recurrent feature of this location, with the timing of the drawdown varying by several weeks between years. A comparison of observed nutrient concentrations in Liverpool Bay with those predicted from inputs from rivers has been presented. Nutrient concentrations in the rivers flowing into Liverpool Bay were highly variable and there was reasonable agreement between predicted freshwater nutrient concentrations using data from this study and riverine nutrient concentrations weighted on the basis of river flow, although the exact nature of mixing between the rivers could not be determined. Predicted Irish Sea nutrient concentrations in the winter were lower than those reported for the input waters of the North Atlantic, supporting findings from previous work that nitrogen is lost through denitrification in the Irish Sea
    corecore