7 research outputs found

    Volcanic ash-leachates: a review and recommendations for sampling methods.

    No full text
    Tephra in plumes can scavenge and thereby rapidly deposit volatiles including sulphur, halogen and metal species. These may then be leached (e.g. by rainfall), potentially releasing heavy loadings to soils and water bodies. Several eruptions have resulted in contamination of pasture, sometimes with serious impacts on livestock. Water quality has also been an issue in some areas affected by tephra fall. This work synthesises the literature on volcanic ash-leachates and considers the controls on volatile adsorption. General trends emerge for basaltic, intermediate and silicic tephra, as well as for variable particle size and transport distance. The applications of ash-leachate data to plume-gas geochemistry, calculation of volatile budgets and environmental impact assessment are evaluated. Comparisons for different eruptions are hampered by disparities in leachate analysis techniques. A standardised methodology is therefore proposed to facilitate future health impact assessment and volcanological interpretation of results from different sites

    Sensitivity of dispersion model forecasts of volcanic ash clouds to the physical characteristics of the particles

    No full text
    This study examines the sensitivity of atmospheric dispersion model forecasts of volcanic ash clouds to the physical characteristics assigned to the particles. We show that the particle size distribution (PSD) used to initialise a dispersion model has a significant impact on the forecast of the mass loading of the ash particles in the atmosphere. This is because the modeled fall velocity of the particles is sensitive to the particle diameter. Forecasts of the long-range transport of the ash cloud consider particles with diameters between 0.1 μm and 100 μm. The fall velocity of particles with diameter 100 μm is over 5 orders of magnitude greater than a particle with diameter 0.1 μm, and 30 μm particles fall 88% slower and travel up to 5× further than a 100 μm particle. Identifying the PSD of the ash cloud at the source, which is required to initialise a model, is difficult. Further, aggregation processes are currently not explicitly modeled in operational dispersion models due to the high computational costs associated with aggregation schemes. We show that using a modified total grain size distribution (TGSD) that effectively accounts for aggregation processes improves the modeled PSD of the ash cloud and deposits from the eruption of Eyjafjallajökull in 2010. Knowledge of the TGSD of an eruption is therefore critical for reducing uncertainty in quantitative forecasts of ash cloud dispersion. The density and shape assigned to the model particles have a lesser but still significant impact on the calculated fall velocity. Accounting for the density distribution and sphericity of ash from the eruption of Eyjafjallajökull in 2010, modeled particles can travel up to 84% further than particles with default particle characteristics that assume the particles are spherical and have a fixed density

    Probing surfaces with thermal He atoms: scattering and microscopy with a soft touch

    No full text
    Helium atom scattering (HAS) is a well established technique, particularly suited for the investigation of insulating and/or fragile materials and light adsorbates including hydrogen. In contrast to other beam techniques based on Xrays or electrons, low energy (typically less than 100 meV) He atoms are scattered by the tail of the electron density distribution which spill out from a surface, therefore HAS is strictly a nonpenetrating technique without any sample damage. HAS has been used to investigate structural properties of crystalline surfaces, including precise determination of atomic step heights, for monitoring thin film growth, to study surface transitions such as surface melting and roughening and for determining the presence and properties of adsorbates. Energy resolved HAS can provide information about surface vibrations (phonons) in the meV range and surface diffusion. This chapter provides a brief introduction to HAS with an outlook on a new, promising surface science technique: Neutral Helium Microscopy
    corecore