3,188 research outputs found

    Measurement of g-factor tensor in a quantum dot and disentanglement of exciton spins

    Get PDF
    We perform polarization-resolved magneto-optical measurements on single InAsP quantum dots embedded in an InP nanowire. In order to determine all elements of the electron and hole gg-factor tensors, we measure in magnetic field with different orientations. The results of these measurements are in good agreement with a model based on exchange terms and Zeeman interaction. In our experiment, polarization analysis delivers a powerful tool that not only significantly increases the precision of the measurements, but also enables us to probe the exciton spin state evolution in magnetic fields. We propose a disentangling scheme of heavy-hole exciton spins enabling a measurement of the electron spin T2T_2 time

    Numerical relativity for D dimensional axially symmetric space-times: formalism and code tests

    Get PDF
    The numerical evolution of Einstein's field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modelling black hole production in TeV gravity scenarios, analysis of the stability of exact solutions and tests of Cosmic Censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D\ge 5, or SO(D-3) for D\ge 6. Performing a dimensional reduction on a (D-4)-sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata and Nakamura (BSSN) formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the LEAN code and perform a variety of simulations of non-spinning black hole space-times. Specifically, we present a modified moving puncture gauge which facilitates long term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5,6.Comment: 31 pages, 6 figures; v2 Minor changes and added two references. Matches the published version in PRD

    How Do Axisymmetric Black Holes Grow Monopole and Dipole Hair?

    Full text link
    We study the dynamical formation of scalar monopole and dipole hair in scalar Gauss-Bonnet theory and dynamical Chern-Simons theory. We prove that the spherically-symmetric mode of the dipole hair is completely determined by the product of the mass of the spacetime and the value of the monopole hair. We then show that the dynamics of the =1\ell=1 mode of the dipole hair is intimately tied to the appearance of the event horizon during axisymmetric collapse, which results in the radiation of certain modes that could have been divergent in the future of the collapse. We confirm these analytical predictions by simulating the gravitational collapse of a rapidly rotating neutron star in the decoupling limit, both in scalar Gauss-Bonnet and dynamical Chern-Simons theory. Our results, combined with those of Ref.~\cite{R:2022cwe}, provide a clear physical picture of the dynamics of scalar monopole and dipole radiation in axisymmetric and spherical gravitational collapse in these theories.Comment: v2-matches published version in PR

    Geodesic stability, Lyapunov exponents and quasinormal modes

    Get PDF
    Geodesic motion determines important features of spacetimes. Null unstable geodesics are closely related to the appearance of compact objects to external observers and have been associated with the characteristic modes of black holes. By computing the Lyapunov exponent, which is the inverse of the instability timescale associated with this geodesic motion, we show that, in the eikonal limit, quasinormal modes of black holes in any dimensions are determined by the parameters of the circular null geodesics. This result is independent of the field equations and only assumes a stationary, spherically symmetric and asymptotically flat line element, but it does not seem to be easily extendable to anti-de Sitter spacetimes. We further show that (i) in spacetime dimensions greater than four, equatorial circular timelike geodesics in a Myers-Perry black hole background are unstable, and (ii) the instability timescale of equatorial null geodesics in Myers-Perry spacetimes has a local minimum for spacetimes of dimension d > 5.Comment: 13 pages, 2 Figs, RevTex4. v2: Minor corrections. v3: more minor correction

    Radiation from a D-dimensional collision of shock waves: first order perturbation theory

    Get PDF
    We study the spacetime obtained by superimposing two equal Aichelburg-Sexl shock waves in D dimensions traveling, head-on, in opposite directions. Considering the collision in a boosted frame, one shock becomes stronger than the other, and a perturbative framework to compute the metric in the future of the collision is setup. The geometry is given, in first order perturbation theory, as an integral solution, in terms of initial data on the null surface where the strong shock has support. We then extract the radiation emitted in the collision by using a D-dimensional generalisation of the Landau-Lifschitz pseudo-tensor and compute the percentage of the initial centre of mass energy epsilon emitted as gravitational waves. In D=4 we find epsilon=25.0%, in agreement with the result of D'Eath and Payne. As D increases, this percentage increases monotonically, reaching 40.0% in D=10. Our result is always within the bound obtained from apparent horizons by Penrose, in D=4, yielding 29.3%, and Eardley and Giddings, in D> 4, which also increases monotonically with dimension, reaching 41.2% in D=10. We also present the wave forms and provide a physical interpretation for the observed peaks, in terms of the null generators of the shocks.Comment: 27 pages, 11 figures; v2 some corrections, including D dependent factor in epsilon; matches version accepted in JHE

    Risk factors and medical resource utilization of respiratory syncytial virus, human metapneumovirus, and influenza-related hospitalizations in adults—a global study during the 2017–2019 epidemic seasons (hospitalized acute respiratory tract infection [HARTI] study)

    Get PDF
    Background: Respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and influenza are respiratory pathogens leading to hospitalization in adults. Our understanding of the disease burden is limited to data from single-center or 1-season studies in elderly patients. The HARTI study allows comparison of risk factors for progression to severe disease and medical resources utilization (MRU) during and post-hospitalization in adults diagnosed with influenza, RSV, or hMPV. Methods: This was a prospective global study in adults hospitalized with acute respiratory tract infection (40 centers, 12 countries). Participants with influenza, RSV, or hMPV were enrolled in a substudy and followed for up to 3 months postdischarge. Results: Overall, 366 influenza, 238 RSV, and 100 hMPV-infected participants enrolled in the substudy. RSV participants were older and had greater frequency of risk factors and longer duration of symptoms before hospitalization than influenza participants. The RSV and hMPV groups received more bronchodilators, corticosteroids, and oxygen supplementation. No significant differences in intensive care unit admissions or complications were observed. Readmission occurred in 20%-33% of patients within 3 months postdischarge, with the highest rates for RSV and hMPV. In-hospital death occurred in 2.5% of RSV, 1.6% of influenza, and 2% of hMPV participants. In multivariate analyses, length of stay was independently associated with country, renal disease, and increased age; probability of receiving supplemental oxygen was associated with pathogen (hMPV \u3e RSV \u3e influenza), abnormal chest x-ray, and increased age. Conclusions: Although influenza is more frequent, the HARTI study demonstrates greater frequency of underlying risk factors and MRU for RSV and hMPV vs influenza in hospitalized adults, indicating a need for effective interventions

    Use of late-night salivary cortisol to monitor response to medical treatment in Cushing’s disease

    Get PDF
    Objective Monitoring of patients with Cushing’s disease on cortisol-lowering drugs is usually performed with urinary free cortisol (UFC). Late-night salivary cortisol (LNSC) has an established role in screening for hypercortisolism and can help to detect the loss of cortisol circadian rhythm. Less evidence exists regarding the usefulness of LNSC in monitoring pharmacological response in Cushing’s disease. Design Exploratory analysis evaluating LNSC during a Phase III study of long-acting pasireotide in Cushing’s disease (clinicaltrials.gov: NCT01374906). Methods Mean LNSC (mLNSC) was calculated from two samples, collected on the same days as the first two of three 24-h urine samples (used to calculate mean UFC [mUFC]). Clinical signs of hypercortisolism were evaluated over time. Results At baseline, 137 patients had evaluable mLNSC measurements; 91.2% had mLNSC exceeding the upper limit of normal (ULN; 3.2 nmol/L). Of patients with evaluable assessments at month 12 (n = 92), 17.4% had both mLNSC ≤ULN and mUFC ≤ULN; 22.8% had mLNSC ≤ULN, and 45.7% had mUFC ≤ULN. There was high variability in LNSC (intra-patient coefficient of variation (CV): 49.4%) and UFC (intra-patient CV: 39.2%). mLNSC levels decreased over 12 months of treatment and paralleled changes in mUFC. Moderate correlation was seen between mLNSC and mUFC (Spearman’s correlation: ρ = 0.50 [all time points pooled]). Greater improvements in systolic/diastolic blood pressure and weight were seen in patients with both mLNSC ≤ULN and mUFC ≤ULN. Conclusion mUFC and mLNSC are complementary measurements for monitoring treatment response in Cushing’s disease, with better clinical outcomes seen for patients in whom both mUFC and mLNSC are controlled

    Improved performance of the LHCb Outer Tracker in LHC Run 2

    Full text link
    The LHCb Outer Tracker is a gaseous detector covering an area of 5×6m25\times 6 m^2 with 12 double layers of straw tubes. The performance of the detector is presented based on data of the LHC Run 2 running period from 2015 and 2016. Occupancies and operational experience for data collected in ppp p, pPb and PbPb collisions are described. An updated study of the ageing effects is presented showing no signs of gain deterioration or other radiation damage effects. In addition several improvements with respect to LHC Run 1 data taking are introduced. A novel real-time calibration of the time-alignment of the detector and the alignment of the single monolayers composing detector modules are presented, improving the drift-time and position resolution of the detector by 20\%. Finally, a potential use of the improved resolution for the timing of charged tracks is described, showing the possibility to identify low-momentum hadrons with their time-of-flight.Comment: 29 pages, 20 figures, minor changes to match the published versio
    corecore