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ABSTRACT 

Results of high temperature equilibrium electrical 

conductivity measurements as a function of oxygen partial 

pressure have been analysed for Al- and Sc-doped poly- 

crystalline SrTi03 and Al-, Nb-, and La-doped poly- 

crystalline BaTiOo using a defect model that includes 

only Vg  (or V^ ) ,V_\ electrons, holes, and impurities. 

It has been found that BaTiO., and SrTiOo both exhibit 

acceptor-type behaviour when doped with Al or Sc, re- 

gardless of the respective Ba/Ti or Sr/Ti ratios.  Nb- 

and La-doped BaTiOg with Ba/Ti > 1 show para-donor-type 

behaviour. 

Scanning electron microscopy of polished and etched 

samples of polycrystalline SrTiOo reveal the presence 

of a second phase, apparently TiO^, when Sr/Ti < 0.995 

(mol %  TiC<2 >. 50.125).  The amount of second phase in- 

creases with the amount of excess Ti02.  When the samples 

are cooled rapidly from the sintering temperature, the 

second phase particles are fewer in number and smaller. 

Based on a defect model for SrTi03J the position of the 

minimum equilibrium conductivity as a function of oxygen 

partial pressure is a convenient measure of the relative 

content of extrinsic V", i.e. those due to impurities 

and/or excess Ti02.  The observed conductivity results 

are consistent with a slight solubility of excess Ti02 
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in SrTi03<  The effect of cooling rate indicates that 

exsolution of TiCL can occur during some part of the 

cooling process, while the stability of the conductivity 

curves at 1000 C indicates that resolution does not 

occur at this temperature. 

The same defect model has been applied to equilibri- 

um conductivity results for SrTiO- containing excess 

SrO, and BaTiCK and SrTi03 doped with 10000 ppm Al.  It 

appears that excess SrO has a limited solubility in 

SrTiOo, and that Al is much more soluble in SrTiOo than 

in BaTiOo. 

Acceptor-type, donor-type, and para-donor-type be- 

haviour have all been observed in Nb-doped SrTiO~, de- 

pending on the concentration of Nb.  Scanning electron 

micrographs show some evidence to support the proposed 

defect models. 



CHAPTER I 

INTRODUCTION 

In recent years SrTiO- has received a great deal of 

attention due to its useful electrical properties (1,2,3) 

The properties of sintered polycrystalline SrTiO- depend 

upon its microstructure.  The sintering variables, such 

as temperature and composition, are chosen so as to 

reproduce a desirable microstructure in the most con- 

venient and inexpensive way.  All the basic transport 

processes that occur in oxides, including sintering and 

electrical conductivity, are determined by the relative 

movement of atoms and electrons throughout the material 

considered.  The common factor in all of these processes 

is the existing defect structure, and therefore an under- 

standing of the defects that are present and their be- 

haviour is of great importance to the transport processes, 

For example, it has been quite well established that 

doubly ionized ozygen vacancies and related electrons 

are the major defects in both pure and acceptor-doped 

SrTiO., under reduced conditions, and that oxygen vacan- 

cies have some mobility at ambient temperatures (4,5, 

6,7).  Many of the important electrical phenomena such as 

dielectric degradation (8) are dependent upon the con- 

centrations and relative mobilities of electrons and 

oxygen vacancies. 

A common method of determining the defect structure 

is to measure electrical conductivity as a function of 
3 



oxygen activity in the solid.  The conductivity, a., 

is related to the charge carrier concentration, n., and 

its mobility, y., by the relation a.   = n.q.y., where 

q. is the charge on the carrier. As the oxygen activity 

is altered, variations in the concentration, n., with 

changes in the defect structure are reflected in the 

conductivity. 

All of the practical applications for SrTiO- lie at 

a temperature well below the sintering temperature.  Since 

thermodynamic equilibrium cannot be attained for this 

oxide at the operating temperature, the defects present' 

are those which were retained during cooling from the 

sintering temperature.  It is therefore of great value 

to study the defect structure of the material at an 

elevated temperature. 

The equilibrium defect chemistry of BaTiO., has been 

studied in considerable detail as a result of its appli- 

cation as a ferroelectric and piezoelectric material 

(9-16).  Chan et al. (17) have found the defect structure 

of SrTiOo to be similar to that of BaTiO.,.  Their electri- 

cal conductivity results have been correlated by means of 

a model in which the doubly ionized oxygen vacancy, V" 

is the key defect and for which three major sources are 

postulated.  The defect notation is that developed by 

Kroger and Vink (18). 
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Reduction or loss of oxygen: 

°o +  %02 + V0 + 2e' M 

Cation nonstoichiometry in the sense of excess Ti02: 

Ti02 - TiT. + 20o + V''r + Vo' (2) 

The incorporation of acceptor-type impurities such as 

substitution of Al^O., for 2Ti02: 

A1203 (-2Ti02) -*■ 2Al^i + 30Q + VQ'       (3) 

For undoped and acceptor-doped SrTiO-, the complete 

expression for the condition of charge neutrality is: 

2[V£] + p = 2[Vgr] + [A
1] + n (4) 

where [A'] represents the net acceptor content, both 

accidental and added, expressed as the equivalent con- 

centration of single-level acceptor centres, n = Ie'j, 

and p = £h ]. 

An example of a conductivity plot for undoped SrTiOq 

obtained by Chan et al. is shown in Fig. 1.  This plot of 

conductivity against oxygen partial pressure can be di- 

vided into three characteristic regions depending on 

whether the SrTiOo has a stoichiometric deficiency or 

excess of oxygen, and depending on which terms in eqn. (4) 

are most important.  The following analysis (17) is very 

similar to that proposed for BaTiCs (9,10,14,16), and a 

schematic representation of the defect model is shown in 

Fig. 2. 5 



Region I --  In the region of lowest P02,   the ma- 

terial is oxygen deficient  and the reduction reaction, 

Eq.   (1),  is   the major source of defects.     The  approximate 

condition of charge neutrality is  thus 

2[V0']  - n (5) 

The mass-action expression for the reduction reac- 

tion is 

[VQ']n2 = kjPOj"* (6) 

Combination of Eq.   (5)   and   (6)   leads  to 

n  *  (21^) 1/3 P02"1/6 (7) 

which  agrees with the PO2   dependence of  the electron 

concentration found by Yamada and Miller  (4)   and of 

conductivity  found by Walters and Grace   (6).     The agree- 

ment between  the P02 dependence of the conductivity and 

the electron  concentration  found by these two groups 

indicates that the electron mobility is not  composition 

dependent under these conditions.     It will be shown that 

our own results barely reach into  Region I at  the lowest 

PO2 and exhibit this P02 dependence in a very limited 

region,  which  is also the  case with Chan's results as 

shown in Fig.   1. 

Region II  -- This region is bounded on the  low P02 

side by Region I and on the high P02 side by the con- 

ductivity minima.     The pressure dependence of the con- 

ductivity is  approximately P02      which indicates oxygen- 



deficient, n-type behaviour.  This P02 dependence for 

the electron concentration can be obtained from the 

mass-action expression for the reduction reaction, Eq. 

(6), if [V"] is independent of P02, i.e., if there is an 

extrinsic source of V^ such that the reduction reaction 

is no longer the major source of V". This could be due 

to either excess Ti02 or to acceptor impurities, Eq. (2) 

and (3).  In this model it is proposed that even in un- 

doped material with Sr/Ti = 1.000, there is sufficient 

accidental net excess of acceptor impurities to control 

[V"] in this region.  Only in the region of lowest POo 

does the reduction reaction, Eq. (1) , become the major 

source of V".  The preponderance of acceptor impurities 

is related to the relative natural abundances of such 

impurity elements as compared to donor impurity elements. 

The approximate condition of charge neutrality is then 

[V0'] - [Vgr] + % A' (8) 

where [Vg ] represents the contribution to [V J made by 

excess Ti02, while %[A'] is the contribution made by the 

net excess acceptor content. The sum of these two con- 

tributions is referred to as the extrinsic V content. o 

Combination of eq. (6) and (8) gives 

This P02 dependence is characteristic of a wide region of 

the experimental results, as shown in the example in 

Fig. 1. 7 



Region III -- This is the oxygen excess, p-type 

region lying between the conductivity minima and PCU = 1 

atm.  The stoichiometric excess of oxygen is accommodated 

by the extrinsic V" present because of a net excess of 

acceptor impurities or an excess of Ti02 

%02 + Vo* t  0o + 2h* (10) 

Thus there is no crystallographic excess of oxygen 

and no need to propose such unfavorable defects as 0£ or 

V„V.  This is in accord with the very modest enthalpy 

of oxygen addition as indicated by the small temperature 

dependence of conductivity in this region (17).  The 

approximate condition of charge neutrality is the same 

as in Region II, Eq. (8), as long as a negligible frac- 

tion of the extrinsic V" is consumed by the oxygen excess. 

Combination of the mass-action expression for Eq. (10) 

THJT kio po
2"% <u> 

with Eq. (8) gives 

p - k10
%ftVSr3 + %[A']>% P02* (12) 

This is a good representation of the P0? dependence of 

conductivity observed in this region (Fig. 1). 

The Conductivity Minima -- the conductivity minima 

correspond to the p-n transitions where the electron and 

hole contributions to the conductivity are equal 
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nyn = Pyp (13) 

where yn and y are the electron and hole mobilities.  At 

the point of exact compensation, which is offset from 

the conductivity minimum by the mobility ratio, the only 

source of carriers is by ionization across the bandgap. 

nil t  e' + h' (14) 

np = ku = 44 e"
Eg/kT (15) 

where nil refers to the standard state with all electrons 

in the lowest available energy states, and E° is the 
o 

bandgap at 0 K or the enthalpy of the ionization reaction, 

Eq. (14).  At the point of compensation 

n = p = (k'4)% e"
Eg/2kT (16) 

The effects of excess Ti02 and acceptor impurities — By 

combination of Eq. (9) and (12), the P02 at the minimum, 

PO^Onin.), can be expressed as 

P02(min.) = (-V rr l 7 Z yp  k10 {[Vgr] + %[A']}
2 

= (TT>2 IT A" <17> 
"P   10  'Vext 

where IVo]ext 
is the extrinsic V" concentration.  The 

shift of POrt^in.) with [V"]  t is independent of the 

mobilities. 
d log P02(min.) 

9 



Thus at a given temperature, the minimum moves to lower 

PO2 by two orders of magnitude for each order of magni- 

tude increase in . V ext» 
an<3 this shift serves as a mea- 

sure of the relative extrinsic V contents of various o 

samples.  This parameter is independent of the absolute 

values of the conductivity and thus of the sample geo- 

metry and density. An example of this type of shift in 

the minimum due to acceptor doping is shown in Fig. 1. 

It is also represented schematically in Fig. 2. 

Donor-doped SrTiOo has been studied by Chan et al. 

(17), and by Lee (19).  Fig. 3 shows conductivity plots 

for Nb-doped SrTiO- samples obtained by Chan et al.  The 

schematic representation of the defect model is shown 

in Fig. 4, and is divided into two regions. 

Region I -- The reduction reaction, Eq. (1), is the 

major source of defects.  The carrier concentration has 

the same dependence on the oxygen partial pressure as in 

Region I of the acceptor-doped material, i.e. 

n = (2kx)
1/3 P02"

1/6 (7) 

This PCv, dependence is observed in the conductivity re- 

sults at low P0« for all the samples shown in Fig. 4. 

Region II -- Two types of donors are considered here: 

DpO,- where the Ti is substituted for by a pentavalent 

(D ) cation, and D^Oo where the Sr is substituted for 

+3 by a trivalent (D ) cation.  The donors are compensated 

10 



1>y electrons according to the following equations: 

D205 - 2Ti02 f 2D^± + 40Q + %02 + 2e'        (19) 

D203 - 2SrO -»■ 2Dgr + 20Q + %02 + 2e* (20) 

The approximate conditions of charge neutrality are 

[%] - n (21) 

or  [Dgr] * n (22) 

The carrier concentration is fixed by the donor dopant 

during the sample preparation.  Therefore an oxygen pres- 

sure independence of electrical conductivity is observed. 

Figure 3 shows profiles for samples containing 

498 ppm Nb.  The sample with Sr/Ti = 1.000 behaves very 

much as expected from the model described above.  There 

is a P02-independent region corresponding to the following 

equation. 

Nb205 - 2Ti02 -»■ 2Nb^± + 40 Q + %02 + 2e'      (23) 

The expulsion of the fifth oxygen from the filled lattice 

leaves free electrons which compensate the charged donor 

centres. This leads to a region of impurity-controlled 

P02-independent electron concentration and conductivity. 

In the case of Sr/Ti = 0.999, with a dopant concen- 

tration of 498 ppm Nb, the conductivity is significantly 

reduced in the impurity-controlled region.  When Sr/Ti = 

0.995, with the same dopant concentration, the donor-doped 

behaviour is lost completely and the conductivity profile 

11 



looks very much like that of an undoped sample.  The loss 

of the donor-doped characteristics is supposedly due to 

the increase in V" content with the amount of excess Ti0o o 2 

(see equation (2)).   The extra oxygen carried by the 

ttt^Oc can therefore be accommodated in the lattice until 

finally it is all retained and the characteristic donor- 

type behaviour is no longer observed, as shown here: 

Nb2°5 + Vo " 2Ti02 "*" 2NbTi + 50o (24) 

Thus by altering the composition of SrTiOo, it is possi- 

ble to vary the concentration of various defects within 

the material. These changes can then be studied using 

high temperature electrical conductivity measurements. 

Chan et al. (9.17) have measured the effect of excess 

Ti02 on the electrical conductivity of BaTiO., and SrTiOo. 

From the results it appears that there is some solubility 

of excess Ti02 (<0.5 mol %) in SrTiO-, and that Ti02 is 

practically insoluble in BaTiO„.  Eror and Balachandran 

(25) report that the oxygen pressure dependence of electri- 

cal conductivity in samples with Sr/Ti = 0.996, 0.99, and 

0.98 were found to be similar to that obtained in strontium 

titanate with ideal cation-cation ratio.  They suggest 

the results indicate that SrTiOo does not saturate with 

Ti02 even at 50.505 mol % and this is in disagreement 

with the results of Chan et al. (17) who predicted that 

the phase boundary for single-phase SrTiO- is less than 

12 



50.1 mol % Ti02. 

In our research the effect of the Sr/Ti ratio on 

electrical conductivity of SrTiOo has been investigated 

and compared to the results of Chan et al. (17) and 

Eror and Balachandran (25).  The microstructures of 

several samples have been studied using the scanning 

electron microscope, and these have been related to 

their corresponding conductivity results and defect models. 

The microstruetural results have been compared to similar 

observations in BaTiOo by Sharma et al. (22). 

The effect of various dopants on the electrical 

conductivity of SrTiO- and BaTiOo have been studied as a 

continuation of Lee's work (19).  Based solely on the con- 

sideration of the relative ionic size (Table la), the 
+5   +3       +3 

Nb  , Al  , and Sc  ions are assumed to occupy the Ti 

+3     +3 site and La  and Y  ions are assumed to substitute for 

the Ba or Sr.  Al- and Sc-doping should therefore result 

in acceptor-type behaviour since A1JL.   and Sc™. defects 

are formed respectively, whereas Nb-, Y-, and La-doping 

is expected to give donor-type behaviour with the forma- 

tion of Nb*., Yg or Y* , and Lalr or LaJ  respectively. 

Changing the Sr/Ti or Ba/Ti ratio is expected to 

produce an effect upon the impurity behaviour in SrTiOg 

or BaTiO-; for example, the presence of excess Ti02 niay 

force a trivalent impurity that normally occupies the Ti 

site to substitute for Sr or Ba and give rise to donor- 

13 



type behaviour, whereas in the presence of excess SrO or 

BaO, the trivalent impurity may substitute for Ti which 

would result in acceptor-type behaviour.  This seems 

particularly feasible in the case of trivalent impurity 

ions whose sizes are intermediate between those of Ti and 

Sr or Ba.  The effect of the Sr/Ti and Ba/Ti ratios on 

the impurity behaviour in SrTiO„ and BaTiOo was there- 

fore investigated. 

Changes in conductivity as a result of additions to 

SrTiOo of up to 10,000 ppm Al have been studied and com- 

pared with results obtained for BaTiO-. 

The effect of various concentrations of Nb (up to 

30,000 ppm) on the conductivity of SrTiOo has been 

examined.  Both acceptor- and donor-type behaviour have 

been observed depending on the dopant concentration. 

Microstructures of Nb-doped samples have been studied 

on the scanning electron microscope, and have been re- 

lated to the electrical conductivity results and defect 

equations. 

14 
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TABLE la.  Ionic Radii of Cations in ABO,, Perovskites 

and Some Potential Dopants (26) 

Cations  Ba+2  Sr+2 Ti+4 Nb+5 Al+3 La+3 Y+3  Sc+3 

&    1.50  1.27 0.745 0.78 0.67 1.185  1.04 0.885 
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CHAPTER II 

EXPERIMENTAL 

1.  Sample Preparation 

SrTiOo samples were prepared by a modification of a 

technique developed by Pechini (20) , described by Chan 

et al. (17).  Several liters of titanium stock solution 

were prepared by combining batches made in the following 

way:  200 ml of tetra-iso-propyl orthotitanate, obtained 

from E. I. du Pont de Nemours as Tyzor "TPT," was added 

with stirring to 2 liters of Fisher Certified ethylene 

glycol: 350 g of Fisher Certified ACS anhydrous citric 

acid was added and the mixture was stirred until complete 

solution was achieved.  It was then treated until the 

strong odor of isopropyl alcohol disappeared.  Presum- 

ably during this procedure the isopropoxy groups attached 

to the titanium are replaced by the multifunctional ethy- 

lene glycol, which can thermally polymerize with the 

multifunctional citric acid by an esterification reaction. 

After the combined batches had been allowed to homogenize 

for two weeks in a polyethylene container, weighed samples 

were thermally polymerized and ignited to Ti02 to deter- 

mine the Ti content of the solution, which was 0.055649 g 

TiO^/g solution.  Donor- and acceptor-dopant solutions 

were prepared by solution of niobium oxalate obtained 

as a 10% solution from Kawecki- Berylco,   and Eastman 
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practical grade tri-iso-propyl aluminate, respectively, 

in ethylene glycol. Both solutions were assayed by the 

ignition of weighed portions to the corresponding oxide. 

The source of Sr was Johnson-Matthey specpure SrCOo, 

reported to contain 5 ppm Ba, 2 ppm Fe, 1 ppm Ag, and 

<1 ppm Ca, Cu, and Mg, all on a weight basis.  Samples of 

SrTiOo were prepared by dissolution of weighed amounts of 

the SrC03> dried by ignition at 950°C in C02> in weighed 

portions of the Ti stock solution, containing weighed 

amounts of dopant solution where appropriate.  Disso- 

lution of the carbonate, by reaction with the citric 

acid content, was achieved by heating in a glass crystal- 

lizing dish on a hot plate over a period of several hours. 

The viscosity was kept low by additions of dilute citric 

acid until solution was complete.  When all the carbonate 

had dissolved, the mixture was poured into platinum 

crucibles and allowed to polymerize thermally to a glassy 

solid by raising the temperature of the hot plate.  Thus 

the homogeneity of the liquid solution was transformed 

to the solid glass without phase separation.  This was 

then calcined in the same platinum crucible in a furnace 

at 900°C to yield a fine SrTiO- powder.  The sample com- 

positions are expressed in terms of Sr/Ti ratios where 

it should be understood that the Ti includes any added 

Al, Sc or Nb content and the Sr includes any added La 

content, since the dopants are assumed to occupy a 
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particular site depending on their size.  These ratios 

are thus actually site occupation ratios.  For example, 

for each gram atom of Al-dopant added, one mole of TiO« 

was left out, i.e., A1203 was substituted for 2Ti02.  The 

dopant and impurity contents are expressed in ppm atomic 

based on Sr or Ti sites, e.g. (No. of added Al atoms 

x 106)/(No. of Ti and added Al atoms). 

Samples for conductivity measurements were prepared 

in the following way. 0.4 g samples of the powder, with 

3 or 4 drops of water to improve pressability, were 

pressed into rectangular bars at 50,000 psi.  All faces 

and edges were cleaned to remove contamination from the 

steel die.  Two holes were drilled through the largest 

face and 2 cm lengths of platinum wire were inserted 

through each hole.  These two wires were to serve as 

voltage leads.  The samples were then typically sintered 

at 1400°C in platinum containers.  They were held at 

1400°C for two hours in air, and either furnace-cooled 

or quenched by rapidly pulling out of the furnace onto a 

refractory block.  Thus the voltage leads were firmly 

fixed within the holes of the sample after sintering. 

Unfluxed platinum paste (Engelhard 6926) was then fired 

onto the ends at 900°C to serve as current leads.  The 

finished sample is shown diagramatically in Fig. 5. 
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2.     Conductivity Measurements 

The conductivity was measured with the four-point 

d.c.   technique,   using both polarities of applied currents 

in the range 10"  -10"    A to maintain a voltage drop of 

about 0.5 V.    The currents were provided by a Keithley 

225  current source and the voltage drops were measured 

using a Keithley 173A Multimeter.     The four-probe con- 

ductivity technique overcomes the problem of contact re- 

sistance normally encountered in other systems   (21). 

Figure 6 shows  a schematic  diagram of the system used 

here.     If the current  I through the specimen and the 

voltage V across   the two inner probes are measured,   the 

specimen conductivity is given by 

• - ¥t <25) 

where A is the cross-sectional area of the specimen and 

L is the separation of the two inner probes (Fig. 5). 

-1       2 o" is in (ohm cm)  , A in cm , and L in cm.  No portion of 

the voltage drop V occurs across the outer current contacts 

and, therefore, any barrier layers in the vicinity of 

these contacts do not affect the measured value of con- 

ductivity. With the employment of the high impedance 

multimeter, negligible current is allowed to flow in the 

voltage measurement leads.  Consequently, there will be no 

voltage drop across the resistance associated with the 

voltage contacts and this resistance will not influence 

the conductivity measurement. 
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All conductivity measurements were made in a Lind- 

berg 3-zone furnace at a temperature of 1000°C.  The 

system is shown schematically in Fig. 7.  All the levels 

of P02 were obtained by mixtures of Ar-02 and CO-C02.  The 

resulting oxygen activity was determined by the measure- 

ment of the emf from a CaO-stabilized Zr02 cell which 

was located adjacent to the conductivity samples.  The 

cell consisted of a closed-end tube of stabilized zir- 

conia,platinized inside and outside only at the tip, with 

the inside continuously flushed with oxygen (see Fig. 8). 

One sample was measured at a time, the ends of the 

sample being supported by quartz tubes with platinum 

contacts through which the current was passed.  (Quartz 

was used since it has a very low coefficient of thermal 

expansion and good contact with the sample had to be 

maintained during heating to 1000°C.) The voltage leads 

of the sample were attached to platinum wires running 

through separate alumina tubes. A Pt/Pt-10% Rh thermo- 

couple was also present within another alumina tube. All 

the tubes were supported by a metal spacer well outside 

the hot zone of the furnace. 
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3.  Microstructural Analysis 

In order to study the microstructure of the samples, 

rough polishing was accomplished on SiC 600 mesh paper, 

followed by a final polish using diamond paste (6 ym to 

0.25 ym grade).  The samples were either thermally etched 

or chemically etched in HNOo with a few drops of HF. 

Microstructural analysis was carried out by scanning 

electron microscopy. 
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CHAPTER  III 

RESULTS AND DISCUSSION 

3.1    The Effect of Excess TiO,, on Micro structure and 

Electrical  Conductivity of SrTiQ~ 

Figures 9a and 9b show scanning electron micrographs 

of a polished and etched sample having Sr/Ti = 0.900, 

which had been sintered at  1400°C and slow-cooled to 

room temperature.    A discrete second phase is   clearly 

observable.     Its  visibility  is enhanced because it is more 

resistant  to the acid etchant  than  is the matrix,   sug- 

gesting that a higher  concentration of the more basic 

Sr is present in  the matrix.     Figure 10a  shows   an X-ray 

spectrum obtained with  an energy dispersive spectrometer 

when one of the     large particles of second phase was 

probed with the  scanning electron beam.     Only Ti X-rays 

were detected in  this  case.     Figure  10b shows  a spectrum 

obtained from the matrix and indicates the presence of 

Sr.     Figure  10c corresponds  to one of the   smaller parti- 

cles  of second phase,   and also  shows  a small Sr peak,   but 

it is believed that these Sr X-rays   are from the  surround- 

ing matrix and are produced as  a result of  the  limited 

spatial resolution of the electron beam.     Stenton and 

Harmer  (27)  have examined a SrTiO-  sample having Sr/Ti = 

0.900   (sintered at  1400°C)  using scanning  transmission 

electron microscopic (STEM)   analysis,   and have found the 

composition of the  second phase to be pure Ti02.     This 
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was confirmed using electron diffraction, which showed 

that the second phase had the rutile structure. 

Figure 11 is the phase diagram for Sr0-TiO2, which 

predicts a second phase of composition Ti02 in samples 

containing more than 50 mol % Ti02 sintered at 1400°C. 

It appears from the phase diagram that no excess Ti02 is 

soluble in SrTiOo at all. 

Figures 12a and 12b show scanning electron micro- 

graphs of a sample containing more excess Ti02, with a 

Sr/Ti ratio of 0.81.  The sample was sintered at 1400°C 

and slow cooled to room temperature.  Comparing with Figs. 

9a and 9b, there are more second phase particles present 

in this material.  Figure 12c represents the same sample 

sintered at 1470°C (which is above the SrTi03-Ti02 eutec- 

tic temperature of 1440 C) and quenched to room tempera- 

ture.  The particles of second phase are generally smaller 

in this case, and are more continuous along the grain 

boundaries.  Figure 12d is the X-ray spectrum obtained by 

probing the large second phase particle shown in Fig. 12c. 

Thus the particle was found to be Ti02, as was the casein 

samples sintered at 1400°C.  STEM analysis by Stenton and 

Harmer (27) on a sample having Sr/Ti = 0.900, sintered at 

1470 C, showed that the second phase was in the form of 

a continuous layer of varying thickness along the grain 

boundaries, and was pure Ti02.  According to the phase 

diagram for Sr0-Ti02 (Fig. 11), a liquid second phase 
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containing Sr should form if the material is sintered 

above the eutectic temperature. However, to observe any 

Sr in the second phase, the sample would have to be 

cooled infinitely fast, otherwise there is a possibility 

that SrTiO- forms and segregates from the liquid mixture 

during cooling to nucleate at the interface with the 

SrTi03 matrix and leave behind pure TiO^.  From the mor- 

phology of the second phase in the material sintered 

above the eutectic temperature (Fig. 12c), it appears 

that the excess Ti02 did react to form a liquid at the 

sintering temperature. 

Figures 13a and 13b show scanning electron micro- 

graphs of two samples having Sr/Ti = 0.995 (or 0.5 mol 

% excess Ti02) sintered at 1400°C.  Figure 13a represents 

a slow-cooled sample and Fig. 13b represents a quenched 

sample.  Particles of second phase are present in both 

materials. Their composition is assumed to  be Ti02 as in 

the case of the samples containing more excess Ti02 

described above.  The particles are much smaller in the 

quenched material as shown in Fig. 13b, and were only 

observed in a few regions. 

Figure 13c is a scanning electron micrograph of a 

hole in the quenched sample, showing a group of small 

second phase particles present at a grain boundary.  (As 

a result of quenching, damage due to thermal shock made 

polishing almost impossible, resulting in the presence of 
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large holes.throughout the material.)  Figure 13d is a 

scanning electron micrograph of a sample also containing 

0.5 mol % excess TiOv, but sintered at 1470°C and quenched. 

Again large holes formed when attempts were made to polish 

the material.  No discrete second phase particles were 

observed, but there appear to be some areas of second 

phase having a different morphology (top right hand side 

of Fig. 13d). 

Figure 14a shows a scanning electron micrograph of 

a polished and acid-etched sample with Sr/Ti = 1.000. 

Figure 14b is a scanning electron micrograph of a polished 

and thermally-etched surface of the same sample.  No 

second phase was observed, since no excess TiO« was pres- 

ent in this material. 

It may be concluded from these microstructural 

results that the second phase present in samples having 

Sr/Ti < 1 is Ti02»  The amount of second phase decreases 

as the Sr/Ti ratio approaches unity.  In samples rapidly 

cooled from the sintering temperature, the second phase 

particles are fewer in number and smaller.  Sintering 

at a higher temperature changes the morphology and re- 

duces the size of the second phase particles.  Thus it 

appears that excess Ti02 is more soluble in SrTiO- at 

higher temperatures and more of it may be retained in 

solution by rapidly cooling, but the solubility limit 

is much less than 0.5 mol %. 
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Figure 15 shows the conductivity profiles obtained 

at 1000°C for samples having Sr/Ti = 1, which had been 

either slow-cooled or quenched from a sintering temper- 

ature of 1400 C.  The experimental results can be corre- 

lated by means of the defect model described in the 

Introduction.  As stated before, the minimum in the con- 

ductivity profile moves to a lower PO? by two orders of 

magnitude for each order of magnitude increase in [V] 
O c X t- 

(Eq. (18))» and this shift serves as a measure of the 

relative extrinsic V" contents of various samples produced 

by acceptor-doping or dissolved excess Ti02.  From Fig. 

15 it can be seen that the position of the conductivity 

minimum is independent of cooling rate in the absence 

of excess Ti02.  Figure 16 shows conductivity profiles 

at 1000 C for two samples of undoped SrTiOo having Sr/Ti 

= 0.995, together with the profiles for the stoichiometric 

samples shown in Fig. 15.  All samples were sintered at 

1400 C, but one of each composition was either slow- 

cooled or quenched, as indicated in Fig. 16.  The con- 

ductivity minima occur at lower P02 for Sr/Ti = 0.995, 

indicating an increase in extrinsic V" content with excess 

Ti02, as expected from Eq. (2).  There is a further shift 

of the minimum to lower P02 for the quenched sample hav- 

ing Sr/Ti = 0.995, suggesting that more of the excess 

TiO? is soluble at the sintering temperature and may be 

retained in solution by quenching, thus increasing the 
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[V"]£ ..  No such effect of cooling rate on the position 

of the conductivity minimum was observed for samples with 

Sr/Ti = 1.000, which is to be expected since no excess 

Ti©2 should be present in those samples. 

Figure 17 compares conductivity profiles obtained for 

samples with Sr/Ti = 0.995, one sintered at 1470°C and 

the other at 1400°C, followed by quenching in air.  The 

conductivity minimum is at a slightly lower P02 for the 

sample sintered at the higher temperature, indicating an 

increase in solubility of the excess TiO« at the higher 

temperature. 

The micrographs and conductivity results are con- 

sistent with a slight solubility of excess Ti02 (<0.5 

mol %) in SrTiO«, the solubility increasing with higher 

sintering temperatures.  This is in agreement with the 

results of Chan et al. (17) but contradicts the findings 

of Eror and Balachandran (25) who suggest that the solu- 

bility is much higher.  The effect of cooling rate indi- 

cates that exsolution of TiO« can occur during some part 

of the cooling process, while the stability of the con- 

ductivity curves at 1000°C indicates that resolution 

does not occur at this temperature. 

Although Eror and Balachandran (25) state that much 

higher levels of excess Ti02 are soluble in SrTiOo, their 

conductivity results show no shift in the minimum ex- 

pected if the Ti02 goes into solution, which they explain 
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in terms of the formation of neutral vacancy pairs (Vq 

V").  However, the conductivity minimum for a stoichio- 

metric composition obtained by Eror and Balachandran 

occurs at a P02 of approximately 10  atm. which corres- 

ponds to our results for samples containing excess Ti02. 

Our stoichiometric sample exhibited a conductivity mini- 
-3 5 mum at approximately 10    in agreement with the results 

of Chan et al. (17).  We therefore suggest that Eror 

and Balachandran do not observe a shift in the minimum 

since they have not measured a truly stoichiometric 

undoped composition. 

Sharma et al. (22) have studied the effect of the 

Ba/Ti ratio on the microstrueture of sintered poly- 

crystalline BaTiOo, and Chan et al. (9) have measured 

the electrical conductivity of BaTiO- with various Ba/Ti 

ratios.  Their results indicate that Ti02 is practically 

insoluble in BaTiOo. 

Figure 18 includes the conductivity profiles for 

samples containing larger amounts of excess Ti02.  All 

samples were sintered at 1400°C and slow-cooled.  The 

stoichiometric composition (Sr/Ti = 1.000) and the 0.5 

mol %  excess TiO? composition have profiles exhibiting 

a limited -1/6 dependence at the lowest P02 region, 

which indicates that the reduction reaction (Eq. (1)) is 

the major source of V" at those values of P02.  For the 

less stoichiometric compositions, only a -% dependence 
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is observed at lower P0o» s^-nce  tne excess TiO? is the 

major source of V" according to Eq. (2).  The profiles 

for samples having Sr/Ti = 0.990 and 0.900 shown in 

Fig. 18 are identical.  The values of conductivity are 

higher than expected by comparison to the stoichiometric 

and 0.5 mol % excess TiO« compositions.  The sample with 

Sr/Ti =0.81 shows a further increase in conductivity 

-3 in the lower region of P02 (<10  atm.) .  It is proposed 

that this may be due to a contribution to conductivity 

from the larger amount of second phase present in these 

samples.  The second phase (TiO?) could increase the 

concentration of electrons at lower P02 according to Eq. 

(1).  The -% dependence is retained according to Eq. (9) 

for the bulk of the material, but there is an increase 

in the actual values of conductivity as a result of more 

electrons being produced by the second phase at lower P02 

The effect of excess SrO on the conductivity of 

SrTiOo was also studied, and the profiles obtained for 

samples containing 0.2 mol %  and 0.5 mol % excess SrO 

are compared with that of the stoichiometric composition 

in Fig. 19.  There is a shift in the minimum to a lower 

value of P02 for the samples having excess SrO, as was 

the case with samples containing excess TiO?.  This sug- 

gests that the excess SrO is also a source of V"   . . ° o ext 

The following equations are postulated: 
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SrO + SrSr + 0Q + 2VQ  + VJJ (31) 

2SrO -»■ Srgr + Sr^ + 20Q + V^ (32) 

Equation   (32)   seems more likely,   since Sr".  would be  a 

more energetically favorable  compensating defect than 

V^V  considering  its  lower effective  charge.     Also, 

perovskite-type  compounds with Sr ions occupying Ti   sites 

have been listed by Galasso   (28). 

The same argument used for excess TiO«  in  the intro- 

duction may be  applied in this   case  to yield an analogous 

equation  to Eq.   (9),   i.e. 

k, 
n "   {[Sr"   ]  +%rA']}    P°2 * <33> 

which again results in Eq.   (18) 

d log P02(min.) 

d log [VI  . & l oJext 

= -2 (18) 

Thus it is believed that excess SrO also has a limited 

solubility in SrTiO- and gives rise to V"  fc.  Compar- 

ing the shift in the conductivity minimum produced by 

0.5 mol %  excess SrO and that produced by 0.5 mol % 

excess Ti02 (Figs. 16 and 19), it appears that Ti02 is 

slightly more soluble than SrO in SrTiOo — the Vg 

produced by excess TiO« is probably a more energetically 

favorable defect than the Sr™. formed by excess SrO, 

considering the difference in ionic radius between a 

Sr and Ti ion. 
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Figure 9a. 1.0 ym 
Scanning electron micrograph of polished and 
acid-etched sample with Sr/Ti = 0.900, slow- 
cooled from 1400°C. 

Figure 9b.  1.0 ym h 
Scanning electron micrograph of polished and 
acid-etched sample with Sr/Ti = 0.900, slow- 
cooled from 1400°C. 
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Figure 10a.  Energy disper-  Figure 10b.  Energy disper- 
sive spectrum of large second sive spectrum of matrix 
phase particle shown in      shown in Figure 9a. 
Figure 9a. 

nfg™n10C'  Et}erP dispersive spectrum 
o± small second phase particle shown 
figure 9a. in 
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Figure 11.     SrO-Ti02  Phase Diagram   (29) 
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Figure 12a.  1,0 p H 
Scanning electron micrograph 
of polished and acid-etched 
sample with Sr/Ti = 0.810, 
slow-cooled from 1400 C. 

Figure 12b.  1.0 ym t- 
Scanning electron micrograph 
of polished and acid-etched 
sample with Sr/Ti = 0.810, 
slow-cooled from 1400 C. 

Figure 12c.  1.0 p f Figure 12 d. 
Scanning electron micrograph Energy dispersive spectrum 
of polished and acid-etched of large second phase 
sample with Sr/Ti = 0.810,   particle shown in Fig. 12c. 
quenched from 1470 C. 
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Figure 13a. 
Scanning electron micrograph Scanning electron micrograph 
of polished and acid-etched of polished and acid-etched 
sample with Sr/Ti = 0.995,   sample with Sr/Ti = 0.995, 
slow-cooled from 1400 C.    quenched from 1400°C. 

Figure 13c.  1.0 ym h-\ Figure 13d.  1.0 ym HH 
Scanning electron micrograph Scanning electron micrograph 
of acid-etched "hole" in 
sample with Sr/Ti = 0.995, 
quenched from 1400°C. 

of acid-etched "hole" in 
sample with Sr/Ti = 0.9 95, 
quenched from 1470°C. 
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Figure 14a.  1.0 yra M 
Scanning electron micrograph of polished 
and acid-etched sample with Sr/Ti = 1.000, 
slow-cooled from 1400 C. 

Figure 14b. 1.0 ym _ 
Scanning electron micrograph of DolicW 
an* thermally-etched sample with Sr/?? - 
1.000, slow-cooled from 1400°C       " 
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3.2 Impurity Behaviour in BaTiOo and SrTiO,, 

Table lb shows a summary of Lee's results (19) and 

Table 2 lists the compositions that were investigated as 

a continuation of his work.  All conductivity measure- 

ments were made at 1000°C.  The conductivity profiles 

for these samples are shown in Figs. 20-22, and a summary 

of the observed types of behaviour is given in Table 3, 

together with Lee's results for comparison. 

Figures 20 and 21 are the conductivity profiles 

obtained for the Al- and Sc-doped SrTiOo and the Al- 

doped BaTiO«, respectively, with A/B > 1 in all three 

cases.  The curves are very similar to the one shown in 

Fig. 1 for acceptor-doped SrTiOo with A/B <_  1, and may 

be explained using the defect model outlined in the 

Introduction.  From the summary of results in Table 3 it 

can be seen that BaTiOo and SrTiOo both exhibit acceptor- 

type behaviour when doped with Al or Sc, regardless of 

the Ba/Ti or Sr/Ti ratio.  Note that the conductivity 

profile for the Al-doped SrTiOo in Fig. 20 does not 

include a -1/6 dependence of conductivity in the lowest 

region of POo, whereas there is a limited -1/6 depen- 

dence exhibited by the Sc-doped sample.  This suggests 

that the larger concentration of Al is a major source 
-18 of V" even at a P0o of 10   atm. and dominates over o I 

the reduction reaction, which results in the -1/4 de- 

pendence of conductivity according to Eq. (9). 
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Figure 22 includes the conductivity profile obtained 

for Nb-doped BaTiO~ with excess BaO, which shows similar 

behaviour to that of the equivalent SrTiOo composition 

studied by Lee.  Both materials exhibit para-donor be- 

haviour.  Lee has explained this type of behaviour by 

dividing the conductivity profile into three regions: 

Region 1, decrease of log a at a slope of -1/6; Region 

2, the oxygen pressure-independent region; Region 3, 

decrease of log a at a slope of -1/8.  These are de- 

scribed as follows: 

Region 1 -- The reduction reaction, Eq. (1), is the 

major source of defects.  The carrier concentration has 

the same dependence on the oxygen partial pressure as in 

Region I of the acceptor-doped or donor-doped material, 

i,e*        n = (21^) 1/3 P02"
1/6 (7) 

Taking logarithms of both sides, a -1/6 dependence of 

log n (and therefore a -1/6 dependence of log a) on 

log P02 is obtained. 

Region 2 -- This mid-POp region corresponds to the 

oxygen pressure-independent region (Region II) of the 

donor-doped behaviour described in the introduction 

(Eq. (23)).  In the para-donor case this behaviour is 

only observed in a very limited region of P0« and a 

change in slope occurs at higher values of PC^. 

Region 3 -- Lee has proposed that at the higher P02, 
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oxygen ions are incorporated into an appropriate crystal 

site to form "BaO" and leave behind vacant barium sites 

BaBa + %02 + 2e' + "BaO" + Vg (26) 

There are two possible sites for the incoming oxygen: 

one is the segregation of excess BaO to form the second 

phase in the grain boundary; the other is by accommoda- 

tion in a structural change, such as the formation of an 

ordered structure with blocks of perovskite BaTiO- 

separated by layers of BaO, which has been proposed by 

Ruddlesden and Popper (23) in the case of SrTiOo and 

further confirmed by Tilley (24).  The barium vacancy, 

V« , is controlled by the amount of dopant 

[D*] * 2[V£a] (27) 

which is the condition of charge neutrality for the 

following reaction: 

Ba_  + Nbo0- - 2Ti0o ■*■  2Nb„. + 40 + V"  + "BaO" 
DSL Z  D Z H    o   jia 

(28) 

Since the mass action expression for Eq. (26) is 

n2 « [V^a]P02"
% (29) 

then the combination of Eqs. (27) and (29) leads to 

n « P02"^ (30) 

According to the preceding argument, it is expected that 

a -% dependence of conductivity should be observed in 

the region of high oxygen partial pressure.  However, 

the results show a -1/8 dependence, which may represent 
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some sort of transition between donor-type (or oxygen 

pressure-independent) behaviour and acceptor-type (or 

-% dependent) behaviour. 

Figure 22 also includes the conductivity profile 

obtained for La-doped BaTiO^ with excess BaO, which 

exhibits a very similar para-donor-type behaviour to the 

Nb-doped material. 

From the summary of results in Table 3, it can be 

seen that Al- and Sc-doping gives rise to acceptor-type 

behavior in both SrTiO., and BaTiO.,, regardless of the 

Sr/Ti or Ba/Ti ratio.  It thus appears that these two 

trivalent dopant cations always occupy the Ti sites.  The 

magnitude of the difference in charge is the same whether 

the trivalent dopant cation substitutes for a Ti ion or 

for a Sr (or Ba) ion.  However, Al and Sc ions are closer 

in size to that of a Ti ion (Table la) and are therefore 

expected to occupy Ti sites in the lattice.  The Al ion 

is actually slightly smaller than a Ti ion and will be 

very unlikely to substitute for the larger Sr or Ba ion 

in preference to substitution for a Ti ion.  Al- or Sc- 

doping is therefore expected to result in acceptor-type 

behaviour, and this is found to be the case. 

Y is also a trivalent ion, so that its charge should 

not influence which site it occupies.  The size of the 

Y ion is almost halfway between that of a Ti ion and that 

of a Ba, so that it seems equally likely that the Y ion 
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will occupy either site in BaTiOq.  From the results in 

Table 3, Y-doping does not always give rise to acceptor- 

type behaviour.  In the case of BaTiCU, excess Ti02 ap- 

pears to force the Y onto the Ba site to give Y~Q and 

donor-type behaviour, whereas excess BaO forces the Y 

ion onto a Ti site to give Y*. and acceptor-type be- 

haviour.  In the case of SrTiOq, the Y ion is closer in 

size to a Sr ion and Y-doping is more likely to give 

YA  and donor-type behaviour even in the presence of 

excess SrO.  Para-donor-type behaviour is actually ob- 

served in this case. 

The presence of excess Ti02 in SrTiOq results in 

acceptor-type behaviour in all cases.  In other words, 

the excess Ti02 appears to be most effective in altering 

the behaviour of impurities in SrTiOq.  This may be re- 

lated to the fact that excess Ti02 is more soluble in 

SrTiCU than in BaTiOq, and also it is more soluble than 

SrO in SrTiO- as reported in section 3.1. 

Assuming the Y ion sits on a Sr site, the loss of 

donor-doped characteristics could be due to the increase 

in V" content produced by solution of excess Ti02 (Eq. 

(2)), where the extra oxygen carried by the donor impurity 

can be accommodated in the lattice until finally it is 

all retained and the characteristic donor-type behaviour 

is no longer observed.  This effect is not observed in 

BaTiOo since excess Ti02 is practically insoluble in 

BaTi0o. 3 53 



The La ion has a size very close to that of a Sr 

ion.  Again the charge of the La ion is not thought to 

influence which site it occupies in the lattice since it 

is a trivalent ion, but from consideration of its rela- 

tive size it is expected to substitute for a Sr ion 

rather than a Ti ion.  Consequently, donor-type behaviour 

is predicted for La-doped SrTiOo.  This is observed in 

SrTiOo with excess SrO, but not in SrTiOo with excess TiOo. 

As in the case of Y-doped SrTiOo, acceptor-type behaviour 

is observed for La-doped SrTiOo in the presence of excess 

Ti02, and the same explanation holds.  In the case of 

BaTiOo, the size of the La ion is intermediate between 

that of a Ba ion and that of a Ti ion, but from the re- 

sults in Table 3, it seems to prefer to occupy a Ba site 

even in the presence of excess BaO. 

The Nb ion has a size very close to that of a Ti 

ion, and a valency of +5, so that it would appear more 

favorable for a Nb ion to occupy a Ti site as far as 

both size and charge imbalance are concerned.  This would 

lead to donor-type behaviour, which incidentally would 

also be observed if the Nb ion occupied a Sr or Ba site. 

This behaviour is observed in BaTiOo with excess TiOo. 

The total loss of donor-type characteristics in SrTiOo 

with excess TiOo and the partial loss of donor-type 

characteristics in SrTiOo with excess SrO may be ex- 

plained by the greater solubility of the excess TiOo, 
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which therefore produces more oxygen vacancies to help 

accommodate the extra oxygen carried by Nb20c according 

to Eq. (24).  The para-donor-type behaviour cannot be 

easily explained in the case of Nb-doped BaTiOo with 

excess BaO, unless it is assumed that there is also some 

solubility of excess BaO in BaTiO-. 
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TABLE lb:  Impurity Behavior in BaTiOo and SrTiCX, 

(Lee's Work) 

Dopant 

Behavior 

BaTiO. SrTiO. 

Ti02 deficient A/B > 1  La +3 

,+3 

Sc +3 

Al 

Nb 

+3 

+5 

D 

(D) 

(D) 

Ti02 excess 

(or stoichiometric) 

A/B < 1 

La 

Sc 

Al 

+3 

l+3 

+3 

+3 

Nb +5 

D 

D 

A 

A 

D 

A 

A 

A 

A 
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TABLE 2.  Samples Investigated as a Continuation of 

Lee's Work 

Sample 
I.D. 

A/B 
Ratio 

Dopant 
Concentration 
in Mol. PPM 

Dopant 

•i-i 

u 
w 

CO 
o    II 
•w 

w  <; 

ST1.005 

ST1.005 

1.005 

1.005 

1405 

1132 

Al 

Sc 

CO 

H 

pq 

O 
•H 
H 
cd 

PQ 

pq 

BT1.005 

BT1.005 

BT1.002 

1.005 

1.005 

1.002 

1284 

1124 

822 

Al 

Nb 

La 

All samples were sintered at 1400 C in air. 
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TABLE 3:  Impurity Behavior in BaTi03 (*this study) 

Dopant Behavior 

BaTiO, SrTiO. 

Ti02 deficient A/B > 1   La 

Sc 

Al 

Nb 

+3 

{+3 

+3 

+3 

+5 

(D)* D 

A (D) 

A* 

A* A* 

(D)* (D) 

TiC^ excess 

(or stoichiometric) 

A/B < 1 

La 

Sc 

Al 

Nb 

+3 

+3 

+3 

+5 

D 

D 

A 

A 

D 

A 

A 

A 

A 
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3.3 The Effect of Al-Doping on the Electrical Con- 

ductivity of SrTiQ3 and BaTiO^ 

It has been shown in section 3.1 that BaTiO^ and 

SrTiO., both exhibit acceptor-type behavior when doped 

with Al, regardless of the Ba/Ti or Sr/Ti ratio.  The 

effect of the added Al, as an acceptor impurity, on the 

conductivity of BaTiO~ or SrTiOo, is consistent with 

the defect model described in the Introduction.  Al- 

doping produces a shift in the conductivity minimum as 

predicted by Eq. (18).  This can be seen in our results, 

in the case of SrTiO^ with Sr/Ti = 1.005, by comparing 

Fig. 9 and Fig. 22 which show the conductivity profiles 

for Al-doped SrTiOo and undoped SrTiO.,, respectively. 

The effect of larger amounts of Al on the con- 

ductivity of SrTiOg and BaTiO« has been investigated in 

this study.  Figure 23 compares conductivity profiles 

obtained for two 10,000 ppm Al-doped SrTiO« samples with 

the profile shown in Fig. 9 which represents an Al- 

dopant concentration of 1405 ppm.  A shift in the con- 

ductivity minimum to lower PO2 is observed for the two 

highly-doped materials, with a slightly further shift in 

the one containing excess SrO.  (The excess Sr may force 

more Al dopant ions onto Ti sites, which would result in 

a higher concentration of V"  . and explain the observed 

further shift in the minimum to lower PO^.)  The shape 
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of the conductivity minimum has also changed, and is now 

flatter in the case of the highly-doped samples. 

Figure 24 compares the conductivity profiles of 

BaTiOo containing 10,000 ppm Al and 1284 ppm Al, and 

shows no further shift in the minimum. 

As explained in the Introduction, the shift serves 

as a measure of the relative extrinsic V" content, which o 

is increased by the solution of Al in the titanate 

sublattice according to Eq. (3).  Thus it appears from 

the above results that Al is more soluble in SrTiO- than in 

BaTiOo.  This suggests that the A-site ions (Sr or Ba) 

play a role in determining whether or not the Al ion 

occupies a Ti site according to the reaction described 

by Eq. (3). 

The Al seems to be slightly more soluble in the 

SrTiO- when Sr/Ti > 1.  It is believed that excess SrO 

produces fewer V" ^ . than excess Ti0o (see section 3.2) r o ext / 

and will therefore be less likely to reduce the solubility 

of the Al. 

It has been proposed (10) that the nonideal shape of 

the conductivity minima is due to a conductivity contri- 

bution that is essentially independent of PO2 and is so 

small that it affects the results only near the minima. 

It is suggested that this is due to conduction by ex- 

trinsic V" which becomes more significant at higher Al- 

dopant concentrations in SrTiO~. 
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3.4    The Effect of Nb-Doping on the Electrical Conducti- 

vity and Microstructure of SrTiOp 

Figure 25 shows  the conductivity profiles obtained 

for Nb-doped SrTi03 compositions with Sr/(Ti+Nb)   = 

0.995.     (The samples had been slow-cooled from a  sinter- 

ing temperature of 1400°C.)    Acceptor-type behaviour is 

observed in the material  doped with 2,000 ppm Nb.     The 

samples  containing 5,000 ppm and 10,000 ppm Nb exhibit 

donor-type behaviour, with the P02~independent region 

extending  to  lower oxygen pressures  for the more highly- 

doped material.    As  the Nb-dopant concentration is  in- 

creased further to  15,000,  20,000  and 30,000 ppm,   an 

acceptor-type PO^-dependence of  conductivity with a -% 

slope  is observed at intermediate oxygen pressures. 

These highly-doped samples  differ from the 2,000 ppm 

Nb-doped acceptor-type material  in that their conductivity 

profiles do not include a minimum, with the  ~k depend- 

dence  extending to  an oxygen pressure of 1 atmosphere. 

The defect models explaining the  acceptor- and donor- 

type behaviour have been described in the Introduction. 

The model used in section 3.1  to  explain para-donor type 

behaviour may be applied to the results obtained here 

for the highly-doped materials,   where at intermediate and 

higher oxygen pressures  the donor-type  characteristics are 

lost.     In effect,   the material  takes up exactly enough 

oxygen  to absorb all of the impurity-related electrons 
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as the oxygen is transformed into oxide ions. With the 

loss of extrinsic electrons, some other negatively charged 

defect must appear to balance the positive charges of 

the donor centers.  Since interstitial oxide ions are 

unlikely in the perovskite structure, it has been pro- 

posed that the added oxygen combines with strontium ex- 

tracted from the SrTiOo to form a Sr-rich second phase, 

leaving strontium vacancies, Vg , in the crystalline 

bulk to compensate the donors 

%02 + SrSr + 2e' t  "SrO" + Vg'r (34) 

"SrO" represents a Sr-rich second phase, analogous to the 

"BaO" described in Eq. (28) for BaTi03, in which case 

the following dependence was derived. 

n « PO2"
% (30) 

This dependence is observed in the profiles for the 

highly-doped SrTiO- samples shown in Fig. 25. 

Daniels and Hardtl (11) have also observed this -% 

dependence of log a on log P02 for highly La-doped BaTiO- 

and suggest that the La donors are predominantly compen- 

sated by doubly ionized metal vacancies.  Gravimetric 

measurements by Eror and Smyth (13)  on donor-doped 

BaTiO~ have shown that the reversible change of oxygen 

content, between specified states of oxidation and re- 

duction, is proportional to the dopant concentration. 

The driving force for additional uptake of oxygen is the 

compensation of the electronic disorder introduced by 
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the donor-dopant.  The increase in energy that is required 

to introduce an ion into the host lattice is more than 

compensated by the decrease in electronic disorder.  The 

fact that highly donor-doped BaTiO- is nonconducting can 

be explained by this mechanism of "stoichiometric com- 

pensation," and it appears from our results that the same 

may apply to highly donor-doped SrTiOo. 

Figures 26-30 are scanning electron micrographs of 

the Nb-doped samples.  The grain size is much smaller in 

the samples containing >^ 15,000 ppm Nb, which could be 

explained by the presence of a grain-growth inhibiting 

second phase such as "SrO." A second phase was actually 

observed in the samples containing >^ 15,000 ppm Nb, as 

illustrated in Figs. 29 and 30, although it was impossible 

to determine the composition of this phase due to its very 

small width.  The microstructures were found to be the 

same for the two materials doped with 20,000 ppm and 

30,000 ppm Nb, and the conductivity profiles for these 

two samples shown in Fig. 25 are identical.  This suggests 

that their structures are saturated with Nb ions and com- 

pensating strontium vacancies, and no more second phase 

is produced. 
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Figure 26. 
Scanning electron micrograph Scanning electron micrograph 
of acid-etched "hole" in 
sample with Sr/(Ti+Nb) = 
0.995, doped with 2000 ppm 
Nb. 

of acid-etched "hole" in 
sample with Sr/(Ti+Nb) = 
0.995, doped with 5000 ppm 
Nb. 

Figure 28. Figure 29. 
Scanning electron micrograph Scanning electron micrograph 
of acid-etched "hole" in    of polished and acid-etched 
sample with Sr/(Ti+Nb) =    sample with Sr/(Ti+Nb) = 
0.995, doped with 10000 ppm 0.995, doped with 15000 ppm 
Nb. Nb. 
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Figure 30.  Scanning electron micrograph 
of polished and acid-etched sample with 
Sr/(Ti+Nb) = 0.995. doped with 20000 ppm 
Nb. LOfim i 1 
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CHAPTER IV 

CONCLUSIONS 

Summary of the discussion leads to the following 

conclusions: 

1. V" may be introduced into the SrTiO~ structure 

by dissolving excess Ti02 or excess SrO, as well as by 

acceptor-type doping. The solubility of these various 

additives differs and therefore the negatively charged 

defect produced in each case could govern the solubility. 

The following reactions have been proposed, which account 

for the changes observed in the conductivity profiles: 

A203 - 2TiO£ ■*■ 2A£± + 30Q + V£ (35) 

Ti02 - TiT. + 20Q + Vgr + VQ- (36) 

2SrO .- Sr" + 2() + V" + Src (37) 
li    o   o    Sr 

The solution of excess SrO (Eq. (37)) produces relatively 

unfavorable Sr"., and SrO has least solubility.  The 

shift in the conductivity minimum is largest in the case 

of acceptor-type doping, indicating a higher concentra- 

tion of V" and therefore a higher concentration of AJ,. . 

The lower effective negative charge of this defect and 

the relatively similar ionic sizes of the acceptor-type 

dopant ion and the Ti ion may be the reason for the higher 

solubility of acceptor-type dopants in SrTiOo. 
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2.  The solubility of excess Ti02 in SrTiO„ in- 

creases with temperature, and more of the Ti02 may be 

retained in solution by rapidly cooling.  Therefore the 

concentration of V" within the material will depend on 

the cooling rate. 

The solubility of excess Ti02 is greater in SrTiOo 

than in BaTiOq, suggesting that either V" is a more favor- 

able defect than V«' , or that the Ba ions render the ac- 

commodation of extra Ti ions more difficult in the same 

way as they appear to influence the occupation of Ti 

sites by Al ions (since Al is also more soluble in 

SrTiOo than in BaTi03). 

3.  The Ba/Ti and Sr/Ti ratios play a major role in 

the impurity behaviour of BaTiOo and SrTiOo, respective- 

ly.  In the case of BaTiOo, Y impurity ions appear to be 

forced onto Ti sites by excess Ba to give Yl.   and acceptor- 

type behaviour, or onto Ba sites by excess Ti to give 

Y*  and donor-type behaviour, and this is probably due to 

the fact that the size of the Y ion is midway between the 

size of the Ba ion and that of the Ti ion.  These trends 

are also observed for La-doped BaTiOo, although donor- 

doped characteristics are not totally lost in the presence 

of excess Ba, probably because the La ion is larger than 

the Y ion and will not be forced as easily onto a Ti site. 

The solubility of excess Ti02 in SrTiOo, and to a 

lesser extent the solubility of excess SrO in SrTiOo, 
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accounts for an increase in V".  This helps accommo- o 

date the extra oxygen carried by donor-type impurities, 

(i.e. those with a valency greater than the host cations 

which they replace).  This results in a partial or total 

loss of donor-type behaviour which gives para-donor-type 

or acceptor-type behaviour, respectively.  In the case 

of SrTiOo,  the donor type behaviour expected from Nb-, 

La-, and Y-doping is not observed at all in the presence 

of excess Ti02, and para-donor behaviour is exhibited by 

Nb- and Y-doped SrTiO- with excess SrO.  Excess Ti02 is 

more soluble in SrTiOo and therefore a greater source 

of V" than SrO, and is more effective in changing the 

impurity behaviour of SrTiOo. 

4.  Depending on the level of doping, Nb produces 

strikingly different behaviour in SrTiO~ containing excess 

TiOo.  Low concentrations of Nb are insufficient to over- 

come the effect of the excess Ti02, but as the concentra- 

tion is increased donor-type behaviour is observed.  Fur- 

ther additions of Nb decrease the grain size of the ma- 

terial which is consistent with the appearance of another 

phase in the grain boundaries.  The second phase is be- 

lieved to be Sr-rich "SrO," formed according to the 

following reaction: 

%02 + SrSr + 2e' +  "SrO" + Vgx (34) 

Vg compensates the donors (Nbl.), and the donor-type 
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behaviour is  lost so that  the material is insulating 

when sintered in air. 
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APPENDIX 

The Conductivity Data for all compositions used in this 

s tudy. 

All samples were slow-cooled from a sintering temperature 

of 1400 C and measured at 1000°C unless otherwise stated. 
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TABLE 4:  The Conductivity Data for ST 1.005-1405 Al. 

-log POp (atm.)      log q(flcm) 

0 -1.92 

-2.22 

-2.41 

-2.55 

-2.66 

4.40 _2>89 

1.25 

2.10 

2.70 

3.20 

4.90 

6.10 

-2.96 

-3.05 

6'70 -3.04 

7.85 

8.40 

-2.92 

-2.81 

9'20 -2.61 

10.35 _2>33 

11.15 _2iU 

12.05 _1>91 

12.70 _1>77 

13.90 _1<49 

14.75 _1>32 

16.00 _1>09 

17.00 .0>85 

18.00 _0>59 
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TABLE 5:  The Conductivity Data for ST 1.005-1132 Sc 

-log P0o (atm.) log aCftcm) 

0 -1.94 

.1.35 -2.26 

2.06 -2.42 

2.66 -2.55 

3.28 -2.70 

4.45 -2.92 

5.29 -3.-4 

5.79 -3.07 

6.21 -3.08 

6.98 -3.06 

7.31 -3.03 

8.30 -2.87 

9.19 -2.69 

10.50 -2.38 

12.67 -1.86 

13.89 -1.58 

14.73 -1.41 

15.99 -1.19 

16.93 -1.04 

17.94 -0.84 
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TABLE 6:  The Conductivity Data for BT 1.005-1284 Al 

-Log P0o (atm.) _ i 
Log a(Qcm)   x 

0 -1.82 

1.29 -2.12 

2.08 -2.29 

2.72 -2.42 

3.34 -2.55 

4.49 -2.71 

5.07 -2.76 

5.77 -2.78 

6.31 -2.76 

7.09 -2.68 

7.88 -2.56 

8.76 -2.39 

10.25 -1.89 

10.98 -1.89 

12.68 -1.50 

13.86 -1.22 

14.75 -1.02 

16.03 -0.74 

17.00 -0.53 

18.02 -0.31 
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TABLE  7:     The Conductivity Data for BT 1.005-1124 Nb 

-Log P0o   (atm.) Log  a(ftcm) 

0 -2.19 

1.31 -2.11 

2.05 -2.03 

2.66 -1.96 

3.28 -1.88 

4.43 -1.71 

4.88 -1.65 

6.91 -1.39 

8.16 -1.24 

9.22 -1.12 

10.41 -1.01 

10.98 -0.96 

12.66 -0.83 

13.88 -0.74 

16.00 -0.57 

16.98 -0.40 

17.97 -0.24 
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TABLE 8:  The Conductivity Data for BT 1.002-822 La 

-Log P0o (atm.) Log aCftcm) 

0 -2.21 

1.46 -2.19 

2.04 -2.17 

2.71 -2.13 

3.38 -2.08 

4.56 -1.97 

5.56 -1.84 

6.86 -1.69 

7.71 -1.58 

8.37 -1.49 

9.25 -1.39 

10.48 -1.24 

11.12 -1.17 

12.73 -1.00 

13.91 -0.88 

14.73 -0.80 

16.01 -0.66 

16.97 -0.58 

18.00 -0.43 
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TABLE 9:  The Conductivity Data for Undoped ST1.000, 
Quenched from a Sintering Temperature of 
1400°C. 

-Log P0o (atm.) 

0 

Log a(ftcm)~ 

-2.48 

2.05 -2.90 

2.93 -3.01 

4.33 -3.01 

5.24 -2.92 

7.20 -2.46 

8.23 -2.24 

10.52 -1.72 

12.66 -1.19 

13.90 -0.93 

16.04 -0.52 

18.02 -0.22 
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TABLE 10:  The Conductivity Data for Undoped ST1.000. 

-Log P0o (atm.) Log a(ficm)~ 

0 -2.51 

1.10 -2.75 

2.55 -2.99 

3.34 -3.05 

4.02 -3.03 

4.94 -2.93 

6.01 -2.74 

6.42 -2.65 

7.40 -2.42 

7.96 -2.29 

8.78 -2.10 

10.25 -1.74 

11.20 -1.52 

12.70 -1.18 

13.91 -0.92 

14.73 -0.76 

15.98 -0.53 

16.94 -0.37 

17.96 -0.21 
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TABLE 11:  The Conductivity Data for Undoped ST0.995, 
Quenched from a sintering temperature of 
1400°C 

-Log P0„   (atm.) Log a(ftcm)~ 

0 -2.17 

1.24 -2.45 

2.07 -2.64 

2.59 -2.74 

3.50 -2.90 

4.66 -3.01 

6.00 -3.00 

7.07 -2.90 

8.35 -2.64 

9.13 -2.45 

10.20 -2.19 

11.30 -1.90 

12.69 -1.59 

13.90 -1.28 

14.74 -1.09 

15.96 -0.80 

17.00 -0.58 

18.08 -0.42 
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TABLE 12:     The Conductivity Data for Undoped ST0.995 

-Log P0o   Catm.) Log  a(ficm)~ 

0 -2.26 

1.26 -2.54 

2.06 -2.72 

2.61 -2.82 

3.37 -2.95 

4.50 -3.04 

5.76 -2.99 

7.21 -2.80 

8.49 -2.51 

9.38 -2.29 

10.58 -2.00 

11.45 -1.79 

12.61 -1.53 

13.90 -1.24 

14.74 -1.05 

15.9 7 -0.77 

16.98 -0.58 

18.05 -0.41 
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TABLE 13:     The Conductivity Data for Undoped ST0.995 
Quenched from a sintering temperature of 
14706C. 

-Log P0„   (atm.) Log a(ftcm) 

0 -2.00 

1.08 -2.25 

2.06 -2.48 

2.75 -2.63 

3.40 -2.75 

4.50 -2.92 

4.99 -2.97 

5.39 -2.99 

5.99 -2.99 

6.79 -2.94 

7.67 -2.83 

8.26 -2.72 

9.11 -2.55 

10.45 -2.25 

11.12 -2.09 

12.46 -1.77 

13.89 -1.43 

14.72 -1.23 

15.97 -0.94 

16.97 -0.71 

18.02 -0.47 
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TABLE  14:     The Conductivity Data for Undoped ST0.990 

-Log P0o   (atm.) Log a(ftcm) 

0 -2.06 

1.07 -2.31 

2.05 -2.53 

2.50 -2.62 

3.27 -2.76 

4.45 -2.91 

5.39 -2.94 

6.24 -2.89 

7.51 -2.70 

8.83 -2.42 

10.11 -2.11 

11.12 -1.87 

12.38 -1.57 

13.92 -1.21 

14.74 -1.03 

15.98 -0.76 

16.96 -0/55 

17.98 -0.34 
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TABLE  15:     The Conductivity Data for Undoped ST0.900 

-Log P0o (atm.) Log a(ncm) 

0 -2.05 

1.04 -2.30 

2.07 -2.52 

2.64 -2.63 

4.55 -2.91 

5.18 -2.94 

6.12 -2.89 

6.75 -2.82 

7.76 -2.64 

8.43 -2.50 

9.16 -2.34 

10.46 -2.02 

11.17 -1.85 

12.18 -1.62 

12.69 -1.49 

13.91 -1.21 

14.71 -1.03 

16.96 -0.55 

18.02 -0.34 
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TABLE 16:  The Conductivity Data for Undoped ST0.810, 

-Log P0o (atm) Log a(ftcm)~ 

0 -2.07 

1.12 -2.32 

2.05 -2.51 

2.94 -2.66 

4.51 -2.84 

5.14 -2.84 

6.46 -2.71 

7.40 -2.57 

8.52 -2.34 

10.46 -1.90 

11.15 -1.74 

12.64 -1.38 

13.88 -1.10 

14.71 -0.91 

16.02 -0163 

16.95 -0.44 

18.01 -0.25 

91 



TABLE 17:  The Conductivity Data for Undoped ST1.002. 

-Log P0o   (atm.) Log  a(ficm)~ 

0 -2.41 

1.09 -2.64 

2.08 -2.84 

2.75 -2.94 

3.48 -3.01 

3.97 -3.03 

4.62 -3.01 

5.53 -2.92 

6.90 -2.71 

8.17 -2.44 

8.95 -2.26 

10.26 -1.95 

11.25 -1.71 

12.70 -1.37 

13.87 -1.13 

14.70 -0.97 

15.96 -0.73 

16.94 -0.54 

17.97 -0.31 
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TABLE 18:  The Conductivity Data for Undoped ST1.005. 

-Log P0„   (atm.) Log aCficm)"1 

0 -2.43 

1.06 -2.66 

2.03 -2.84 

3.30 -3.02 

5.58 -2.96 

7.20 -2.65 

7.88 -2.48 

8.87 -2.21 

17.02 -0.52 

17.89 -0.35 
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TABLE  19:     The Conductivity Data for ST1005-10000 Al 

-Log P0o   (atm.) Log a(ftcm) 

0 -1.51 

1.34 -1.81 

2.05 -1.96 

2.18 -1.98 

2.78 -2.10 

3.55 -2.24 

4.71 -2.42 

5.46 -2.52 

6.34 -2.58 

7.53 -2.62 

7.75 -2.62 

8.24 -2.62 

9.00 -2/59 

9.41 -2.57 

10.40 -2.49 

11.17 -2.40 

12.66 -2.16 

13.89 -1.91 

14.70 -1.74 

15.98 -1.44 

16.98 -1.21 

17.97 -0.96 
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TABLE 20:     The  Conductivity Data  for STO .995-10000 Al 

-Log P0o   (atm.) Log a(ftcm) 

0 -1.60 

1.04 -1.84 

2.07 -2.06 

2.70 -2.18 

3.51 -2.32 

4.59 -2.48 

5.77 -2.59 

7.24 -2.64 

7.98 -2.64 

9.10 -2.59 

10.29 -2.46 

11.01 -2.36 

12.70 -2.06 

13.91 -1.80 

14.72 -1.61 

16.01 -1.131 

16.99 -1.06 

18.00 -0.80 
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TABLE  21:     The Conductivity Data for BT 0.995-10000 Al, 

-Log P0o (atm.) 

0 

1 .08 

2 .07 

2 .80 

3 .33 

4 .46 

5, .45 

6, .29 

6. ,74 

7. .21 

7. 79 

8. .55 

9. ,69 

11. 16 

12. 69 

13. 91 

14. 73 

15. 99 

16. 92 

17. 90 

Log a (ficm)"1 

-1 .79 

-2 .04 

-2 .25 

-2 .40 

-2 .49 

-2 .68 

-2 .74 

-2 .70 

-2. .66 

-2, .60 

-2. .51 

-2. .36 

-2. ,10 

-1. 77 

-1. 41 

-1. 13 

-0. 95 

-0. 67 

-0. 48 

-0. 28 
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TABLE 22:  The Conductivity Data for STO.995-10000 Nb. 

-Log P0o (atm.) Log a(ftcm) 

0 -0.53 

1.11 -0.53 

4.36 -0.53 

8114 -0.53 

10.33 -0.53 

11.00 -0.53 

12.62 -0.51 

13.92 -0.47 

14.76 -0.42 

16.06 -0.30 

17.03 -0.21 

18.07 -0.09 
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TABLE 23:  The Conductivity Data for STO.995-5000 Nb. 

-Log P0o   (atm.) x Jl Log  a(Qcm) 

0 -1.71 
2.08 -1.69 

3.86 -1.66 

4.91 -1.63 

6.04 -1.55 

7.92 -1.47 

8.37 -1.43 

11.17 -1.18 

12.67 -0.98 

13.88 -0.81 

14.73 -0.69 

15.99 -0.50 

16.97 -0.35 

17.97 -0.19 
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TABLE 24:  The Conductivity Data for STO.995-15000 Nb, 

-Log P0o   (atm. ) Log  a(ficm) 

0 -2.37 

1.05 -2.11 

4.23 -1.36 

6.96 -0.79 

8.88 -0.52 

10.22 -0.33 

10.91 -0.25 

12.65 -0.08 

14.69 +0.08 

15.98 +0.18 

16.94 +0.26 

17.93 +0.36 
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TABLE 25:  The Conductivity Data for STO.995-20000 Nb. 

-Log P0o   (atm.) Log 0(ftcm) 
0 -2.63 
1.18 -2.35 
2.06 -2.14 
2.95 -1.94 
3.34 -1.85 
4.54 -1.62 
5.93 -1.26 
7.57 -0.95 
8.84 -0.71 
8.90 -0.69 

10.21 -0.45 
10.31 -0.43 
13.88 +0.17 
17.96 +0.67 
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TABLE 26:     The  Conductivity Data for STO.995-30000 Nb, 

lLgg_PQ2   (atm.) 

0 

1.14 

2.93 

4.39 

8.99 

11.47 

12.64 

13.90 

14.73 

15.98 

18.01 

Log aCficm")"1 

-2.63 

-2.36 

-1.94 

-1.65 

-0.69 

-0.23 

-0.03 

+0.16 

+0.30 

+0.46 

+0.67 
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TABLE 27:     The Conductivity Data for STO.995-2000  Nb, 

-Log P0o  (atm.) 
_i 

Log a(ftcm) 

0 -2.62 

1.18 -2.83 

2.05 -2.96 

2.99 -2.99 

3.59 -2.97 

4.70 -2.82 

5.75 -2.59 

6.87 -2.36 

8.13 -2.10 

8.87 -1.96 

10.31 -1.64 

11.20 -1.44 

12.63 -1.17 

13.90 -0.93 

14.72 -0.78 

15.95 -0.57 

16.96 -0.40 

17.97 -0.23 
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