53 research outputs found

    Wild ruminants as reservoirs of domestic livestock gastrointestinal T nematodes

    Get PDF
    Gastrointestinal nematode (GIN) infections in cattle cause appetite suppression which leads to poor feed conversion, reduced weight gain and reduced milk production. Overuse and exclusive reliance on anthelmintic drugs has resulted in widespread resistance in many parasitic nematode species infecting livestock making control increasingly difficult. Wild ruminants are competent hosts of a number of nematode species that typically infect and are best adapted for cattle, sheep, and goats. Thus, the potential exists for wild ruminants to act as reservoirs in the translocation of domestic GIN, including those carrying anthelmintic resistance mutations as well as susceptible genotypes. The potential for parasite exchange is heightened by interfaces or ecotones between managed and wild rangelands, and by perturbations linked to climate warming that can increasingly alter the distributions of wild ungulates and their interactions with domestic and free-ranging ruminants. To investigate the extent to which wild ruminants harbour parasites capable of infecting domestic ruminants we first performed an epidemiological study of feces from wildlife hosts that spanned 16 states and included white-tailed deer (85 % of the samples), pronghorn, elk, mule deer, bighorn sheep, moose, cattle, and caribou across the United States. All samples were cultured to third stage larvae and nematode DNA was isolated and PCR amplified. Among the 548 wild ruminant samples received, 33 % (181 samples) were positive for nematode DNA, among which half (84 samples) contained DNA from GIN species commonly found in cattle. DNA from cattle GIN species was detected in 46 % of samples from the Northeast, 42 % from the Southeast, 10 % from the Midwest, 0 % from the Southwest and 11 % from the West. Deep amplicon sequencing of the ITS-2 rDNA indicated that Ostertagia and Trichostrongylus were present in 90 % and 69 % of the nematode DNA positive samples, respectively, whereas Haemonchus, Cooperia and Oesophagostomum were present in 26 %, 2 % and 10 % of the samples, respectively. These data clearly show that wild ruminants commonly harbour multiple parasite species whose primary hosts are domestic cattle, and suggest that further work is warranted to investigate their specific roles in the management of anthelmintic resistance

    Development and validation of a HEXACO situational judgment test

    Get PDF
    The purpose of this study was to develop and validate a construct-based situational judgment test of the HEXACO personality dimensions. In four studies, among applicants, employees, and Amazon Mechanical Turk participants (Ns = 72–305), we showed that it is possible to assess the six personality dimensions with a situational judgment test and that the criterion-related validity of the situational judgment test is comparable to the criterion-related validity of traditional self-reports but lower than the criterion-related validity of other-reports of personality. Test–retest coefficients (with a time interval of 2 weeks) varied between.55 and.74. Considering personality is the most commonly assessed construct in employee selection contexts (Ryan et al., 2015), this situational judgment test may provide human resources professionals with an alternative assessment tool

    Wild ruminants as reservoirs of domestic livestock gastrointestinal T nematodes

    Get PDF
    Gastrointestinal nematode (GIN) infections in cattle cause appetite suppression which leads to poor feed conversion, reduced weight gain and reduced milk production. Overuse and exclusive reliance on anthelmintic drugs has resulted in widespread resistance in many parasitic nematode species infecting livestock making control increasingly difficult. Wild ruminants are competent hosts of a number of nematode species that typically infect and are best adapted for cattle, sheep, and goats. Thus, the potential exists for wild ruminants to act as reservoirs in the translocation of domestic GIN, including those carrying anthelmintic resistance mutations as well as susceptible genotypes. The potential for parasite exchange is heightened by interfaces or ecotones between managed and wild rangelands, and by perturbations linked to climate warming that can increasingly alter the distributions of wild ungulates and their interactions with domestic and free-ranging ruminants. To investigate the extent to which wild ruminants harbour parasites capable of infecting domestic ruminants we first performed an epidemiological study of feces from wildlife hosts that spanned 16 states and included white-tailed deer (85 % of the samples), pronghorn, elk, mule deer, bighorn sheep, moose, cattle, and caribou across the United States. All samples were cultured to third stage larvae and nematode DNA was isolated and PCR amplified. Among the 548 wild ruminant samples received, 33 % (181 samples) were positive for nematode DNA, among which half (84 samples) contained DNA from GIN species commonly found in cattle. DNA from cattle GIN species was detected in 46 % of samples from the Northeast, 42 % from the Southeast, 10 % from the Midwest, 0 % from the Southwest and 11 % from the West. Deep amplicon sequencing of the ITS-2 rDNA indicated that Ostertagia and Trichostrongylus were present in 90 % and 69 % of the nematode DNA positive samples, respectively, whereas Haemonchus, Cooperia and Oesophagostomum were present in 26 %, 2 % and 10 % of the samples, respectively. These data clearly show that wild ruminants commonly harbour multiple parasite species whose primary hosts are domestic cattle, and suggest that further work is warranted to investigate their specific roles in the management of anthelmintic resistance

    Genomic signatures of selection associated with benzimidazole drug treatments in Haemonchus contortus field populations

    Get PDF
    Genome-wide methods offer a powerful approach to detect signatures of drug selection. However, limited availability of suitable reference genomes and the difficulty of obtaining field populations with well-defined, distinct drug treatment histories mean there is little information on the signatures of selection in parasitic nematodes and on how best to detect them. This study addresses these knowledge gaps by using field populations of Haemonchus contortus with well-defined benzimidazole treatment histories, leveraging a recently completed chromosomal-scale reference genome assembly. We generated a panel of 49,393 genomic markers to genotype 20 individual adult worms from each of four H. contortus populations: two from closed sheep flocks with an approximate 20 year history of frequent benzimidazole treatment, and two populations with a history of little or no treatment. Sampling occurred in the same geographical region to limit genetic differentiation and maximise the detection sensitivity. A clear signature of selection was detected on chromosome I, centred on the isotype-1 β-tubulin gene. Two additional, but weaker, signatures of selection were detected; one near the middle of chromosome I spanning 3.75 Mbp and 259 annotated genes, and one on chromosome II spanning a region of 3.3 Mbp and 206 annotated genes, including the isotype-2 β-tubulin locus. We also assessed how sensitivity was impacted by sequencing depth, worm number, and pooled versus individual worm sequence data. This study provides the first known direct genome-wide evidence for any parasitic nematode, that the isotype-1 β-tubulin gene is quantitatively the single most important benzimidazole resistance locus. It also identified two additional genomic regions that likely contain benzimidazole resistance loci of secondary importance. This study provides an experimental framework to maximise the power of genome-wide approaches to detect signatures of selection driven by anthelmintic drug treatments in field populations of parasitic nematodes

    Genomic and transcriptomic variation defines the chromosome-scale assembly of Haemonchus contortus, a model gastrointestinal worm

    Get PDF
    International audienceHaemonchus contortus is a globally distributed and economically important gastrointestinal pathogen of small ruminants and has become a key nematode model for studying anthelmintic resistance and other parasite-specific traits among a wider group of parasites including major human pathogens. Here, we report using PacBio long-read and OpGen and 10X Genomics long-molecule methods to generate a highly contiguous 283.4 Mbp chromosome-scale genome assembly including a resolved sex chromosome for the MHco3(ISE).N1 isolate. We show a remarkable pattern of conservation of chromosome content with Caenorhabditis elegans, but almost no conservation of gene order. Short and long-read transcriptome sequencing allowed us to define coordinated transcriptional regulation throughout the parasite’s life cycle and refine our understanding of cis- and trans-splicing. Finally, we provide a comprehensive picture of chromosome-wide genetic diversity both within a single isolate and globally. These data provide a high-quality comparison for understanding the evolution and genomics of Caenorhabditis and other nematodes and extend the experimental tractability of this model parasitic nematode in understanding helminth biology, drug discovery and vaccine development, as well as important adaptive traits such as drug resistance

    Laparoscopic ileocolic resection versus infliximab treatment of distal ileitis in Crohn's disease: a randomized multicenter trial (LIR!C-trial)

    Get PDF
    Contains fulltext : 69534.pdf (publisher's version ) (Open Access)BACKGROUND: With the availability of infliximab, nowadays recurrent Crohn's disease, defined as disease refractory to immunomodulatory agents that has been treated with steroids, is generally treated with infliximab. Infliximab is an effective but expensive treatment and once started it is unclear when therapy can be discontinued. Surgical resection has been the golden standard in recurrent Crohn's disease. Laparoscopic ileocolic resection proved to be safe and is characterized by a quick symptom reduction.The objective of this study is to compare infliximab treatment with laparoscopic ileocolic resection in patients with recurrent Crohn's disease of the distal ileum with respect to quality of life and costs. METHODS/DESIGN: The study is designed as a multicenter randomized clinical trial including patients with Crohn's disease located in the terminal ileum that require infliximab treatment following recent consensus statements on inflammatory bowel disease treatment: moderate to severe disease activity in patients that fail to respond to steroid therapy or immunomodulatory therapy. Patients will be randomized to receive either infliximab or undergo a laparoscopic ileocolic resection. Primary outcomes are quality of life and costs. Secondary outcomes are hospital stay, early and late morbidity, sick leave and surgical recurrence. In order to detect an effect size of 0.5 on the Inflammatory Bowel Disease Questionnaire at a 5% two sided significance level with a power of 80%, a sample size of 65 patients per treatment group can be calculated. An economic evaluation will be performed by assessing the marginal direct medical, non-medical and time costs and the costs per Quality Adjusted Life Year (QALY) will be calculated. For both treatment strategies a cost-utility ratio will be calculated. Patients will be included from December 2007. DISCUSSION: The LIR!C-trial is a randomized multicenter trial that will provide evidence whether infliximab treatment or surgery is the best treatment for recurrent distal ileitis in Crohn's disease. TRIAL REGISTRATION: Nederlands Trial Register NTR1150

    Natural variation in Caenorhabditis elegans responses to the anthelmintic emodepside

    No full text
    Treatment of parasitic nematode infections depends primarily on the use of anthelmintics. However, this drug arsenal is limited, and resistance against most anthelmintics is widespread. Emodepside is a new anthelmintic drug effective against gastrointestinal and filarial nematodes. Nematodes that are resistant to other anthelmintic drug classes are susceptible to emodepside, indicating that the emodepside mode of action is distinct from previous anthelmintics. The laboratory-adapted Caenorhabditis elegans strain N2 is sensitive to emodepside, and genetic selection and in vitro experiments implicated slo-1, a large K+ conductance (BK) channel gene, in emodepside mode of action. In an effort to understand how natural populations will respond to emodepside, we measured brood sizes and developmental rates of wild C. elegans strains after exposure to the drug and found natural variation across the species. Some of the observed variation in C. elegans emodepside responses correlates with amino acid substitutions in slo-1, but genetic mechanisms other than slo-1 coding variants likely underlie emodepside resistance in wild C. elegans strains. Additionally, the assayed strains have higher offspring production in low concentrations of emodepside (a hormetic effect). We find that natural variation affects emodepside sensitivity, supporting the suitability of C. elegans as a model system to study emodepside responses across natural nematode populations

    Vertical integration as a remedy for imbalances in the 'Porterian' value system. The Dutch financial securities industry at the beginning of the 20th century

    No full text
    The way of accounting for vertical integration, of this paper is based on the 'Porterian' value system and focuses on the relation between the creation and appropriation of value. The essence of a value system is that at each stage in the system value is created and added to the value created at previous stages. We propose that firms which are unable to appropriate the value they create at the stage they currently inhabit, would find it advantageous to integrate vertically towards stages offering a more attractive relation between value appropriation and value creation. This argument will be illustrated here by the case of a large Dutch bank that integrated vertically towards securities trading.Appropriation and creation of value Porterian value system Vertical integration ICT Securities trade

    Parallel Gene Expression Differences between Low and High Latitude Populations of <i>Drosophila melanogaster</i> and <i>D</i>. <i>simulans</i>

    No full text
    <div><p>Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of <i>Drosophila melanogaster</i> and its sister species, <i>D</i>. <i>simulans</i>, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of <i>D</i>. <i>melanogaster</i> and <i>D</i>. <i>simulans</i> sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in <i>D</i>. <i>melanogaster</i>. Highly differentiated SNPs between low and high latitudes were enriched in the 3’ UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes.</p></div
    • …
    corecore