442 research outputs found

    Quantum Criticality and Holographic Superconductors in M-theory

    Full text link
    We present a consistent Kaluza-Klein truncation of D=11 supergravity on an arbitrary seven-dimensional Sasaki-Einstein space (SE_7) to a D=4 theory containing a metric, a gauge-field, a complex scalar field and a real scalar field. We use this D=4 theory to construct various black hole solutions that describe the thermodynamics of the d=3 CFTs dual to skew-whiffed AdS_4 X SE_7 solutions. We show that these CFTs have a rich phase diagram, including holographic superconductivity with, generically, broken parity and time reversal invariance. At zero temperature the superconducting solutions are charged domain walls with a universal emergent conformal symmetry in the far infrared.Comment: 52 pages, 16 figures, 3 appendices; minor changes, version to be published in JHE

    Domain Wall Holography for Finite Temperature Scaling Solutions

    Get PDF
    We investigate a class of near-extremal solutions of Einstein-Maxwell-scalar theory with electric charge and power law scaling, dual to charged IR phases of relativistic field theories at low temperature. These are exact solutions of theories with domain wall vacua; hence, we use nonconformal holography to relate the bulk and boundary theories. We numerically construct a global interpolating solution between the IR charged solutions and the UV domain wall vacua for arbitrary physical choices of Lagrangian parameters. By passing to a conformal frame in which the domain wall metric becomes that of AdS, we uncover a generalized scale invariance of the IR scaling solution, indicating a connection to the physics of Lifshitz fixed points. Finally, guided by effective field theoretic principles and the physics of nonconformal D-branes, we argue for the applicability of domain wall holography even in theories with AdS critical points, namely those theories for which a scalar potential is dominated by a single exponential term over a large range

    The influence of blood on the efficacy of intraperitoneally applied phospholipids for prevention of adhesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The formation of adhesions following abdominal surgery is a well known problem. In previous studies we demonstrated the efficacy and safety of intraperitoneally applied phospholipids in order to prevent adhesion formation. This study evaluates the influence of blood on the efficacy of intraperitoneally applied phospholipids for prevention of adhesions.</p> <p>Methods</p> <p>In 40 Chinchilla rabbits adhesions were induced by median laparotomy, standardized abrasion of the visceral and parietal peritoneum in defined areas of the ventral abdominal wall and the caecum. The animals were randomly divided into four groups. They received either phospholipids 3.0% or normal saline (NaCl 0,9%) (5 ml/kg body weight). In 50% of the rabbits we simulated intraperitoneal bleeding by administration of blood (1,5 ml/kg body weight). The other half served as control group. Ten days following the operation the animals were sacrificed and adhesion formation was assessed by computer aided planimetry and histopathologic examination.</p> <p>Results</p> <p>The median adhesion surface area in the NaCl-group (n = 9) amounted to 68,72 mm<sup>2</sup>, in the NaCl+Blood-group (n = 10) 147,68 mm<sup>2</sup>. In the Phospholipid (PhL)-group (n = 9) the median adhesion surface area measured 9,35 mm<sup>2</sup>, in the PhL+Blood-group (n = 9) 11,95 mm<sup>2</sup>. The phospholipid groups had a significantly smaller adhesion surface area (p < 0.05).</p> <p>Conclusion</p> <p>Again these results confirm the efficacy of phospholipids in the prevention of adhesions in comparison to NaCl (p = 0,04). We also demonstrated the adhesion preventing effect of phospholipids in the presence of intraperitoneal blood.</p

    An instability of higher-dimensional rotating black holes

    Full text link
    We present the first example of a linearized gravitational instability of an asymptotically flat vacuum black hole. We study perturbations of a Myers-Perry black hole with equal angular momenta in an odd number of dimensions. We find no evidence of any instability in five or seven dimensions, but in nine dimensions, for sufficiently rapid rotation, we find perturbations that grow exponentially in time. The onset of instability is associated with the appearance of time-independent perturbations which generically break all but one of the rotational symmetries. This is interpreted as evidence for the existence of a new 70-parameter family of black hole solutions with only a single rotational symmetry. We also present results for the Gregory-Laflamme instability of rotating black strings, demonstrating that rotation makes black strings more unstable.Comment: 38 pages, 13 figure

    Long-term complete responses after 131I-tositumomab therapy for relapsed or refractory indolent non-Hodgkin's lymphoma

    Get PDF
    We present the long-term results of 18 chemotherapy relapsed indolent (N=12) or transformed (N=6) NHL patients of a phase II anti-CD20 131I-tositumomab (Bexxar®) therapy study. The biphasic therapy included two injections of 450 mg unlabelled antibody combined with 131I-tositumomab once as dosimetric and once as therapeutic activity delivering 75 or 65 cGy whole-body radiation dose to patients with normal or reduced platelet counts, respectively. Two patients were not treated due to disease progression during dosimetry. The overall response rate was 81% in the 16 patients treated, including 50% CR/CRu and 31% PR. Median progression free survival of the 16 patients was 22.5 months. Median overall survival has not been reached after a median observation of 48 months. Median PFS of complete responders (CR/CRu) has not been reached and will be greater than 51 months. Short-term side effects were mainly haematological and transient. Among the relevant long-term side effects, one patient previously treated with CHOP chemotherapy died from secondary myelodysplasia. Four patients developed HAMA. In conclusion, 131I-tositumomab RIT demonstrated durable responses especially in those patients who achieved a complete response. Six of eight CR/CRu are ongoing after 46–70 months

    Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction

    Get PDF
    We show that a class of Einstein-Maxwell-Dilaton (EMD) theories are related to higher dimensional AdS-Maxwell gravity via a dimensional reduction over compact Einstein spaces combined with continuation in the dimension of the compact space to non-integral values (`generalized dimensional reduction'). This relates (fairly complicated) black hole solutions of EMD theories to simple black hole/brane solutions of AdS-Maxwell gravity and explains their properties. The generalized dimensional reduction is used to infer the holographic dictionary and the hydrodynamic behavior for this class of theories from those of AdS. As a specific example, we analyze the case of a black brane carrying a wave whose universal sector is described by gravity coupled to a Maxwell field and two neutral scalars. At thermal equilibrium and finite chemical potential the two operators dual to the bulk scalar fields acquire expectation values characterizing the breaking of conformal and generalized conformal invariance. We compute holographically the first order transport coefficients (conductivity, shear and bulk viscosity) for this system.Comment: v2, Important additions: (1) discussion of the entropy current, (2) postulated zeta/eta bound is generically violated. Some comments and references added, typos corrected. 50 page

    Three little pieces for computer and relativity

    Full text link
    Numerical relativity has made big strides over the last decade. A number of problems that have plagued the field for years have now been mostly solved. This progress has transformed numerical relativity into a powerful tool to explore fundamental problems in physics and astrophysics, and I present here three representative examples. These "three little pieces" reflect a personal choice and describe work that I am particularly familiar with. However, many more examples could be made.Comment: 42 pages, 11 figures. Plenary talk at "Relativity and Gravitation: 100 Years after Einstein in Prague", June 25 - 29, 2012, Prague, Czech Republic. To appear in the Proceedings (Edition Open Access). Collects results appeared in journal articles [72,73, 122-124

    Wilson loops in Five-Dimensional Super-Yang-Mills

    Get PDF
    We consider circular non-BPS Maldacena-Wilson loops in five-dimensional supersymmetric Yang-Mills theory (d = 5 SYM) both as macroscopic strings in the D4-brane geometry and directly in gauge theory. We find that in the Dp-brane geometries for increasing p, p = 4 is the last value for which the radius of the string worldsheet describing the Wilson loop is independent of the UV cut-off. It is also the last value for which the area of the worldsheet can be (at least partially) regularized by the standard Legendre transformation. The asymptotics of the string worldsheet allow the remaining divergence in the regularized area to be determined, and it is found to be logarithmic in the UV cut-off. We also consider the M2-brane in AdS_7 x S^4 which is the M-theory lift of the Wilson loop, and dual to a "Wilson surface" in the (2,0), d = 6 CFT. We find that it has exactly the same logarithmic divergence in its regularized action. The origin of the divergence has been previously understood in terms of a conformal anomaly for surface observables in the CFT. Turning to the gauge theory, a similar picture is found in d = 5 SYM. The divergence and its coefficient can be recovered for general smooth loops by summing the leading divergences in the analytic continuation of dimensional regularization of planar rainbow/ladder diagrams. These diagrams are finite in 5 - epsilon dimensions. The interpretation is that the Wilson loop is renormalized by a factor containing this leading divergence of six-dimensional origin, and also subleading divergences, and that the remaining part of the Wilson loop expectation value is a finite, scheme-dependent quantity. We substantiate this claim by showing that the interacting diagrams at one loop are finite in our regularization scheme in d = 5 dimensions, but not for d greater than or equal to 6.Comment: 1+18 pages, 3 figures. v2 added a reference and made minor cosmetic changes, JHEP version. v3 added generalization to arbitrary smooth, closed contours, added references. v4 added references and clarified discussion beneath eq. (23
    corecore