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1 Introduction and summary

The form and function of the AdS/CFT correspondence [1] have evolved since the idea’s
birth. Initially, the correspondence was borne from consideration of the decoupling limit
of branes in string and M-theory with conformal near-horizon supersymmetries, including
the paradigmatic case of duality between type IIB supergravity on AdS5×S5 and strongly
coupled N = 4 super-Yang-Mills theory in the large N limit. Subsequent work relaxed the
correspondence to include bulk spacetimes that are asymptotically AdS and to those with
non-maximal or no supersymmetry.1 The last few years have also seen a broadening of the
scope of correspondence to include bulk actions that have no origin in string or M-theory:
one simply writes down a “bottom-up” Lagrangian that admits an AdS vacuum, and asks
what sort of field theories it can describe, while tabling questions regarding the quantum
existence of the bulk theory. This has led to a productive interface between AdS/CFT
and condensed matter physics, including constructions of gravity duals to holographic
superconductors [5–7], non-relativistic theories with anisotropic Lifshitz scaling [8–10], and
theories with Galilean invariance [11, 12], among much other work.

There has also been work on theories with no microscopic scaling symmetry at all, but
rather merely relativistic symmetry. This correspondence [13] models strongly coupled,

1For foundational work and a review, see [2–4].
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Poincaré-invariant quantum field theories (possibly with some supersymmetry) with a bulk
spacetime that is, at least asymptotically, of the form

ds2 = (Ar)γ
′
ηµνdx

µdxν +
dr2

(Ar)γ′
, (1.1)

along with some number of rolling scalar fields. This goes by the name “Domain Wall/QFT
correspondence”[14].2 The fact that the metric (1.1) is conformal to AdS can be phrased
as crucial to the duality, which was established by decoupling the near-horizon dynamics
of non-conformal D-branes: passage to a conformal, so-called “dual” frame in which the
D-brane near-horizon metric becomes AdSp+2×S8−p reveals a manifest (p+2)-dimensional
gravitational description, in which we identify the radial direction with the energy scale
of the dual field theory [15]. Because the scalars vary and the curvature is somewhere
singular, the duality holds at intermediate energies, away from large curvature and order
one effective string coupling.

This picture can be summed up by the statement that these nonconformal D-branes
have a “generalized conformal structure”[16, 17]: upon passage to the dual frame, the
conformal symmetry of the metric is broken by the nonconstant scalar field, implying that
the radial scale transformation leaves the solution invariant if one shifts the scalar field
simultaneously. This follows from the conformal structure of M-theory branes and their
relation to ten-dimensional type II branes.

In [16, 18] a precise holographic dictionary was established in this case, both for choices
of γ′ that derive from branes and those that do not — that is, the program of holographic
renormalization was extended to these non-asymptotically AdS spacetimes. It seems nat-
ural then to extend the phenomenological philosophy described above in pursuit of the
question, “what are all IR spacetimes that can be patched onto a domain wall solution?”
This dualizes to the question, “what long-range behavior is possible for systems with merely
Poincaré symmetry?” This approach was utilized in [19] in the context of hydrodynamics
of nonconformal branes, for example, but we would like to continue to study phases of field
theories to which DW/QFT applies.

In a separate development, we recall that gravity duals of condensed matter systems
often have the undesirable feature of nonzero entropy at extremality. This runs counter to
the empirical Nernst’s “Theorem”, which says that a generic physical system cooled to zero
temperature should lose all its entropy as it occupies a unique ground state. Gauge/gravity
duality translates this to the statement that we should study finite temperature black holes
which have a degenerating horizon as the temperature is tuned to zero, unlike the standard
example of the charged Reissner-Nordstrom black brane.3 Much work has succeeded in
understanding both the nature of low-temperature physics in strongly coupled systems,
and the extent to which gravity duals can model the intricacies of the real world. But we
would like to understand this better; for instance, intuition might suggest that such ground
state entropies disappear when generic interactions are turned on, or when introducing a

2Henceforth labeled “DW/QFT” for short.
3Of course, this near-horizon AdS2 region of the Reissner-Nordstrom black hole has also been used

constructively, for instance in modeling behavior of IR CFTs in 0+1 dimensions. See e.g. [20–23].
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nonzero external field, but these notions have yet to be comprehensively confirmed or
rebutted (see e.g. [24, 25]).

In this paper, we show that these two puzzles — modeling systems with Poincaré
symmetry and understanding the universal aspects of strongly coupled condensed matter
systems — find novel intersection. Specifically, we consider finite temperature scaling
solutions of a theory of gravity coupled to a U(1) gauge field and a real, neutral scalar,
with a scalar-dependent gauge coupling. In this general form, the action resembles various
dimensionally-reduced string theory actions. We make an electric ansatz for the gauge field,
so our theory will describe a field theory with finite electric charge density. Explicitly, we
examine an action

S = − 1
16πGD

∫
dDx
√
−g
(
R+ f(φ)FµνFµν +

1
2

(∂φ)2 + V(φ)
)
, (1.2)

which admits a general scaling solution for the metric,

ds2 ∼ −rβf(r)dt2 +
dr2

rβf(r)
+ rγdxi · dxi (1.3)

where f(r) is a near-extremal “emblackening” factor that vanishes at the near-extremal
horizon, r = rh, and equals one in the extremal solution (rh = 0). The field equations
demand β, γ > 0, so this metric, by design, has zero extremal entropy. Hence, its extremal
limit can be viewed as approximating the leading near-horizon behavior of a solution with
vanishing horizon area; that is, as the far infrared gravity dual to a system with a unique
zero temperature ground state.

If one insists that this class of metrics is an exact solution of the theory (1.2), it can
only be supported with rolling scalars of the form

φ(r) ∼ ln r + φ0 (1.4)

Moreover, the field equations demand that the scalar potential and gauge coupling are
single exponentials in φ,

V(φ) = −V0e
ηφ , f(φ) = eαφ . (1.5)

An action of the form (1.2) with this exponential potential clearly does not admit
AdS; in fact, its flux-less vacuum is a domain wall. Therefore, if the scaling solution (1.3) is
patched onto an asymptotically domain wall spacetime, then DW/QFT holography dualizes
the global solution to a relativistic theory with power law thermodynamic scaling at low
energies and temperatures. This interpolating geometry — which we construct numerically
— connects the IR spacetime (1.3) to the UV spacetime (1.1), with electric flux sourcing
the IR geometry and a logarithmically rolling scalar accompanying both.

Just as the asymptotic domain wall of the global solution is conformal to AdS, one
can ask whether applying that same Weyl transformation to the IR scaling solution reveals
any similar generalized symmetry left unbroken by the electric charge. Indeed, we find a
conformal frame scale-invariance in the IR metric, so that the near-extremal scaling metric
becomes the near-extremal Lifshitz solution,

d̃s
2

IR = −r
2

l2
f(r)dt2 +

l2

r2

dr2

f(r)
+
(r
l

)γ̃
dxi · dxi , (1.6)
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modified by a logarithmically rolling scalar (1.4).
The low-energy physics of our dual field theory, therefore, is controlled by a “gen-

eralized scale invariance,” despite the solution not exhibiting scale invariance in Einstein
frame. Of course, the invariance is broken by the finite temperature, but it is nonetheless
an interesting result, natural in the context of DW/QFT: just as the UV domain wall space-
time possesses a generalized conformal structure, the charged, Lorentz-symmetry breaking
phase to which the theory flows in the IR retains the part of this structure unbroken by
the presence of that charge.

Four-dimensional holography for the scaling solution (1.3) was studied for the scale-
invariant β = 2 case in [26], both numerically and analytically, and extended to arbitrary
spacetime dimension in [27]. We refer to this as the “modified Lifshitz solution.” The
five-dimensional β 6= 2 solution was presented in [28], where the authors studied a charged
dilaton AdS5 black hole with a ten-dimensional uplift to spinning D3 branes. That full
dilatonic black hole solution approaches this one, for certain values of η and α, in the limit
that the scalar field is large and one can neglect an exponential term in its potential. We
noted earlier that the single-power scaling of the metric is characteristic of the leading
small r behavior of some solution near an extremal horizon of vanishing area. Restricting
our attention to only that term, and demanding that it be part of an exact solution to the
action (1.2), we found that the potential must be a single exponential in φ, namely the
term in some full potential which dominates near the horizon, of course; this was indeed
the motivation of [28] to consider the scaling solution at all.

It was also suggested in [28] that a deformation of the potential V(φ) which generates an
AdS critical point would allow one to study the Einstein frame solution (1.3) holographically
via AdS/CFT. That would necessarily turn the solution into an IR phase of a conformal,
not merely quantum, field theory. We take a different approach, asking as we did earlier
about IR behavior of theories with relativistic symmetry instead.

Even in the conformal case, one should be able to use DW/QFT at intermediate
energies below the scale at which conformal symmetry is manifest, where a single term of
a full (even stringy) potential dominates. We argue for this role of DW/QFT in the body
of the paper, guided by the philosophy of effective field theory. Consider, for instance, a
scalar potential of the form

V(φ) = −V0(e−bφ + beφ) , 1 < 2b+ 1 <

√
1 +

(D − 1)2

V0
, (1.7)

and V0 > 0. This admits an AdS vacuum at the origin, stable with respect to the
Breitenlohner-Freedman bound. When φ is large, the potential is dominated by the second
term. So for a solution in which φ goes to +∞ at the horizon, then decreases monotonically
outwards and settles at its φ = 0 AdS critical point, the fields behave as though near a
domain wall boundary over a large range of r. This suggests that domain wall holography
can act as an effective holographic tool at intermediate energies where a theory is only
relativistic, and the terms in the full potential that become large at larger radii (higher
energies) are not needed.

– 4 –



J
H
E
P
0
2
(
2
0
1
1
)
0
1
3

The paper is organized as follows. We first show, in section 2, that such scaling
behavior for the metric is only compatible with single exponential scalar potentials and
gauge coupling functions. In the process, we come to bear on why there is attractor
behavior in the extremal modified Lifshitz case, despite the presence of a scalar field that
breaks the isometry: the functional form of the scalar is fixed once the metric is given.
We construct the scaling solution in terms of a fixed Lagrangian and explore its parameter
space. Section 3 reviews the relevant aspects of domain wall geometries and introduces the
DW/QFT correspondence itself. We argue that only a subclass of all domain walls can be
treated holographically, namely those with a boundary. The meat of the paper begins in
section 4, where we describe and show evidence of the numerical construction of the global
solution, which is of scaling form in the IR and domain wall form in the UV. We put this
to use in section 5, where we expose a generalized scale invariance of the scaling solution
that descends from the generalized conformal structure of the domain wall. In section 6,
we argue for the wider applicability of domain wall holography, and classify when it is
safe to use, by drawing on effective field theory principles and lessons from the case of
nonconformal D-branes. Section 7 concludes with a discussion of the results and prospects
for future work.

Note added. As this work was being finalized, two papers appeared which give different
treatments of the same solutions.

The authors of [29] characterize a wide class of theories that includes ours and provide
a thorough analytic investigation. They make the assumption that the theories have AdS
critical points in the UV, which we do not, as discussed earlier. Additionally, we provide the
numerical construction of the global solution which explicitly permits holographic analysis.

The paper [30] complements our work by calculating conductivities of the scaling so-
lution.

2 Construction of the action and scaling solution

We reproduce the action of our D-dimensional Einstein-Maxwell-scalar bulk system as

S = − 1
16πGD

∫
dDx
√
−g
(
R+ f(φ)FµνFµν +

1
2

(∂φ)2 + V(φ)
)
, (2.1)

with no reference to any string or M-theory origin as yet.4 f(φ) is a positive definite func-
tion, to ensure the correct sign for the gauge kinetic term. We will consider solutions with
electric charge only, so we do not write any Chern-Simons terms; we also do not show the
boundary terms required for the usual construction of a well-defined variational problem.

Our electric, non-relativistic, planar-symmetric ansatz is

At = At(r) , Ar = ~A = 0

φ = φ(r)

ds2 = −U(r)dt2 +
dr2

U(r)
+ V (r)dxi · dxi ,

(2.2)

4Throughout the paper, we work in D ≥ 4, avoiding the peculiarities of lower-dimensional gravity.
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where i indexes the D−2 boundary spatial coordinates. This metric describes planar black
holes, putatively dual to an electrically charged boundary theory living in Minkowski space.

Our first goal is to show that the scaling behavior for the metric discussed earlier is
only compatible with an exponential gauge coupling function and scalar potential, and a
logarithmically rolling scalar field. In the case of a constant potential, we recover AdSD,
AdS2 × RD−2, and the modified Lifshitz geometry as limiting cases of the most general
solution.

Extracting the field equations, the t component of Maxwell’s equations can be inte-
grated to give the field strength,

Frt = A′t(r) =
ρ

f(φ)V
D−2

2

; (2.3)

the integration constant ρ acts as the charge density of the black hole. Writing the rest of
the field equations in these terms, we have the scalar equation,

S : Uφ′′ +
(D − 2

2

)UV ′
V

φ′ + U ′φ′ =
dV(φ)
dφ

− 2ρ2

f2(φ)V D−2

df(φ)
dφ

(2.4)

as well as three Einstein equations,

E1 :
(D − 2

2

)(V ′′
V
− 1

2
V ′2

V 2

)
= −(φ′)2

2

CON :
(D − 2

2

)U ′V ′
V

+
((D − 2)(D − 3)

4

)UV ′2
V 2

− U(φ′)2

2
+ V(φ) +

2ρ2

f(φ)V D−2
= 0{

E2 :
D − 2

2
U ′′ +

(D − 2
2

)2U ′V ′

V
+ V(φ)− 2(D − 3)ρ2

f(φ)V D−2
= 0
}

(2.5)

The bracketed Einstein equation, (E2), is implied by the rest of the field equations, shown
for example by differentiation of the constraint equation (CON) and substitution from
the others.

As we plug in the scaling behavior

U(r) ∼ rβ , V (r) ∼ rγ , (2.6)

we note that will only consider solutions with β > 1, so that our solutions obey the usual
definition of extremality, namely T = rh = 0, ensuring smooth connection to the finite
temperature solutions.

We also point out that the field equations dictate that β ≤ 2 — where scale invariance
of the metric obtains when β = 2 — and 0 ≤ γ ≤ 2. Upon fixing the form of the
Lagrangian consistent with admission of the scaling solution, these bounds become clear;
so let us proceed.

Returning to the field equations, then, the first Einstein equation (E1) tells us that
the scalar field must take the form

φ(r) = C2 ln r + φ0 . (2.7)

– 6 –
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The remaining undetermined functions are those of the scalar field, f(φ) and V(φ). But
for a neutral scalar, we can form a linear combination of the Einstein equations in which
the scalar only appears in f(φ): taking (CON)− (E2) + U · (E1), we have

U ′V ′

V

(D − 2
2
−
(D − 2

2

)2)
+
UV ′2

V 2

((D − 2)(D − 4)
4

)
+
(UV ′′

V
− U ′′

)D − 2
2
− 2ρ2(2−D)
f(φ)V D−2

= 0 (2.8)

The gauge coupling function f(φ) is fully determined by the metric and therefore, by
the first-order equation (CON), so is V(φ). Specifically, they are both constrained to be
exponential in φ, that is, power law in r: plugging in the scaling form of the metric reveals,
up to positive constants,

f(φ) ∼ ρ2

F (β, γ)
r2−β−γ(D−2) , (2.9)

where we have defined

F (β, γ) =
(D − 4

2

)
γ
(
β − γ

)
+ β(β − 1)− γ(γ − 1) . (2.10)

Demanding reality of the flux, ρ2 ≥ 0, implies F (β, γ) > 0: allowed combinations of β and
γ are bounded by the lines γ = β and γ = 2

D−2(1− β). For β > 1, the metric must have

β ≥ γ , (2.11)

where saturation occurs for vanishing flux, e.g. in AdSD where β = γ = 2. This is the
cousin of the fact that, for example, the Lifshitz geometry (1.6) sourced by real two- and
three-form fluxes, as in [8], can only act as a gravity dual to Lifshitz fixed points with z > 1.
Such a similarity in the causal structure of our scaling solution to the Lifshitz solution is
our first hint that the two may have some connection.

Furthermore, by plugging this form for f(φ) back into the Einstein equations, one sees
that the potential is also a power law in r:

V(φ) = −ρ2G(β, γ)rβ−2 , (2.12)

where

G(β, γ) ≡ 2
(

1 +
(D − 2)γ
F (β, γ)

(
γ
(D − 2

2

)
+ (β − 1)

))
. (2.13)

β, γ > 0 implies G(β, γ) > 0 for D > 3; thus, V(φ) must be negative. And because β ≤ 2,
V(φ) must diverge at small r or be constant everywhere. As expected, a scale-invariant
solution can only solve a theory with the latter: as we rescale r, φ picks up a constant,
which must not affect the energy of the theory because we are simply executing a symmetry
transformation.

What we have shown, in the end, is that the scalar rolls down the exponential po-
tential as it nears the horizon, presumably signaling the dive toward zero entropy at zero

– 7 –
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temperature: φ is “looking” for a critical point of the potential, as exists for the unique
finite entropy extremal AdS2 × RD−2 geometry [31], but cannot find it.

Even in the case where the potential V(φ) is constant, the exponentiality of the gauge
coupling function f(φ) explains the zero extremal entropy in terms of the attractor mech-
anism [26]: the diverging scalar drives the system toward the runaway minimum of the
effective attractor potential, Veff = ρ2f−1(φ). The fact that there is attractor behavior at
all despite the lack of true SO(2,1) isometry is accounted for by our analysis above: the
form of the attractor potential is fixed once the metric’s SO(2,1) isometry is given. Thus
we have a case of an attractor in which the full functional form of the massless scalar is
fixed near the extremal horizon.

Let us note that if the scalar is charged, the form of f(φ) and V(φ) is not fixed as above,
indicating that a charged interaction between φ and Aµ is compatible with extremal scaling
behavior (1.3) for a range of gauge couplings and potentials.

In anticipation of a possible embedding of this solution into a consistent truncation
of some higher-dimensional supergravity, we end this subsection with the observation
that a multi-scalar version of this solution can also support the metric (2.6). Writing
a schematic action

S = − 1
16πGD

∫
dDx
√
−g
(
R+ f(φi)FµνFµν +

1
2

(∂φi)2 + V(φi)
)
, (2.14)

field equation (E1) is satisfied for all scalars logarithmic in r. Then the power law behavior
of f(φi) and V(φi) means that both are products of exponentials,

V(φ) = −V0e
ηiφi , f(φ) = eαiφi . (2.15)

The space of solutions is then dictated by which of the {ηi, αi} is nonzero.

2.1 Extremal solution

Having shown that such exact scaling solutions only exist in theories with an exponential
scalar potential and gauge coupling function, we rewrite the action and establish parametric
definitions in terms of Lagrangian parameters. Our action is

S = − 1
16πGD

∫
dDx
√
−g
(
R+ eαφFµνF

µν +
1
2

(∂φ)2 − V0e
ηφ
)
, (2.16)

Withou the flux term, this theory describes a consistent sphere truncation of a higher-
dimensional supergravity to gravity coupled to a single scalar [32]. Our ansatz, once more, is

ds2 = −C1r
βdt2 +

dr2

C1rβ
+ C3r

γdxi · dxi

φ(r) = C2 ln r + φ0

A′t(r) =
ρ

rαC2+γD−2
2

(2.17)

As φ0 and C3 can be eliminated by rescaling r and xi, respectively, we will set φ0 = 0
and C3 = 1. Then the parameters of our ansatz, {C1, C2, ρ, β, γ} are given in terms of the

– 8 –
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physical parameters of the theory, {V0, η, α} as follows:

β = 2− 2(D − 2)(α+ η)
(α+ η)2 + 2(D − 2)

η

γ =
2(α+ η)2

(α+ η)2 + 2(D − 2)

C2 = −(D − 2)
α+ η

γ

ρ2 =
V0

2
2− η2 − αη
2 + α2 + αη

C1 =
V0((α+ η)2 + 2(D − 2))2

(D − 2)(2 + α2 + αη)(2(D − 2) + α2(D − 1)− η2(D − 3) + 2αη)

(2.18)

As we have no scale invariance, C1 receives a constant rescaling as we rescale r. For order
one radii, the validity of our classical analysis demands that C1 is small. This is essentially
the phenomenological version of taking the large N limit: for an action without fluxes
descendant from string theory, there is no clear concept of what N is, and instead we just
insist that the gravity theory is classical. On the field theory side, this guarantees that the
density of degrees of freedom is large.

Without loss of generality we restrict η > 0, and equation (1.5) then implies that
V0 > 0 and φ must diverge to positive infinity at the horizon.

We elucidate the content of these expressions by noting the following:

• When η = 0, β = 2: the scalar potential is constant, and our solutions become scale
invariant. This framework enables us to consider AdSD (α → +∞, γ = 2, no flux,
φ constant), AdS2 × RD−2 (α → 0, γ = 0, flux through RD−2, φ constant), and the
modified Lifshitz solution (α arbitrary, 0 ≤ γ ≤ 2, flux through RD−2, φ ∼ ln r) as
formal limits.

• In order for φ(r)→ +∞ for small r and the flux to be real, the bound on α in terms
of some fixed η is

− η < α <
2
η
− η (2.19)

The lower bound says that β ≤ 2, where saturation occurs only if the potential is
constant (η = 0).

To be certain that this scaling solution is within the domain of validity of a classical
gravitational treatment, we study the singularity structure of the spacetime. Calculation
of the Ricci scalar, squared Ricci tensor and Kretschmann invariant reveal a curvature
singularity at r = 0 for the general scaling solution:

R = A1r
β−2

RµνR
µν = A2(rβ−2)2

RµνλσR
µνλσ = A3(rβ−2)2 ,

(2.20)

where Ai = fi(β, γ) that can never simultaneously vanish. This reproduces the result that
the extremal Lifshitz metric (β = 2) has constant, finite curvature everywhere, but also

– 9 –
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tells us that spacetimes with β < 2 are smooth at large r, and in fact have asymptotically
vanishing curvature invariants. We will return to this important fact in the next section,
where we begin to discuss domain walls as holographic spacetimes. As for the singularity
at r = 0, we will show the near-extremal generalization of this solution presently, shielding
the singularity in the usual manner.5

2.2 Near-extremal solution

This theory also admits a finite temperature generalization of our scaling solution, whereby
one adds an emblackening factor to the metric that protects the singularity at the origin:
now,

U(r) = C1r
β
(

1−
(rh
r

)ω)
, (2.21)

where ω = β−1+γD−2
2 , and all other fields and parametric definitions remain unchanged.

Preservation of the correct metric signature is ensured for β > 1.
One finds the temperature of the geometry via the usual analytic continuation to

Euclidean space, where demanding periodicity of the time coordinate so as to avoid conical
singularity at the origin gives

T =
1

4π
C1ωr

β−1
h . (2.22)

The entropy per unit volume of the planar horizon is

s ≡ S

VRD−2

=
1

4GD
r
γ(D−2

2
)

h , (2.23)

yielding an entropy density-temperature scaling relation,

s ∼ Tχ , χ =
(D − 2)(α+ η)2

2(D − 2) + (α+ η)(α− (2D − 5)η)
. (2.24)

Other thermodynamic quantities follow from differentiation of the entropy density, e.g. the
specific heat is positive and of the same power in rh as the entropy density.

By definition, χ > 0 implies β > 1 and vice versa, ensuring that the T = s = rh = 0
extremal limit is obtained smoothly as we lower the temperature. One can arrange for an
infinite range of χ by changing the physical parameters of the theory.

Let us quickly note two facts about this scaling:

1. χ = D − 2, its free field value, when α = 1
η − η, a D-independent result.

2. For a given η, there is a one-parameter family of theories which have linear specific
heat, χ = 1, for which

α =
1

D − 3

(
η(5− 2D) +

√
η2(D − 2)2 + 2(D − 2)(D − 3)

)
(2.25)

This α is consistent with the bound (2.19). Generically, this value of α appears to
have no relation to any AdS3 geometry of the gravity dual.

5We also note that our solution, and its near-extremal generalization, have a pp singularity at the

horizon which indicates geodesic incompleteness due to diverging tidal forces as measured by a freely falling

observer. The Lifshitz spacetime is known to suffer from such a feature at its horizon as well; as there, one

can accept such singularities in hopes that they have some stringy resolution [33].
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How do we use gauge/gravity duality in this situation? In the usual AdS/CFT cor-
respondence, the behavior of the bulk fields maps onto properties of the dual field theory
living on the boundary. The area of the black hole horizon would correspond to the low
temperature entropy of the theory whose IR physics is captured by the bulk dynamics at
small r. When β = 2, AdS is the natural vacuum of the theory, and so such an interpre-
tation is possible, presuming an interpolating solution exists that patches the IR geometry
onto an asymptotic AdS in the UV. This was found numerically in [26] for the extremal
modified Lifshitz solution.6

But in the context of a theory which does not admit an AdS vacuum, this framework
obviously cannot apply. A global solution, if it exists, patches the IR dynamics onto some
other UV spacetime: one must ask what this spacetime is, and whether a correspondence
can be set up which permits us to make such thermodynamic identifications of geometric
quantities.

This latter question is answered affirmatively as we turn to the solution which is the
analog of AdS in this theory, namely the domain wall spacetime.

3 Domain walls

Consider the parametric relations (2.18). Suppose our theory was such that α = 2
η −η, and

hence the scaling solution would have zero flux: then the metric would have β = γ ≡ γ′.
When γ′ = 2, this is of course AdS. When γ′ 6= 2, this is none other than a domain
wall solution, familiar from various contexts and the obvious backbone of the DW/QFT
correspondence. For instance, the noncompact part of the extremal near-horizon D-brane
geometry has this form, as do extremal solitonic solutions in dimensionally reduced gauged
supergravities. We show below that, in fact, such a domain wall solution exists for all
allowed sets of {α, η}.

Ignoring supersymmetries, this spacetime can have, at most, Poincaré symmetry.
Whereas asymptotically AdS solutions are gravity duals to conformal field theories, asymp-
totically domain wall solutions are gravity duals to theories with only a relativistic sym-
metry. The decrease in elegance in establishing a correspondence in this case is countered
by the increase in the number of real-world systems to which this treatment is applicable.

We first review the details of domain walls with an eye toward establishing the holo-
graphic correspondence. In the process, we show why domain walls with γ′ < 1 are unfit
for this purpose.

3.1 Geometry

The most general single-scalar domain wall solution can be written in the form

ds2 = (Ar)γ
′
ηµνdx

µdxν +
dr2

(Ar)γ′

φ(r) = C ′2 lnAr
(3.1)

6In appendix A, we find it for the near-extremal Lifshitz solution.
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In our model, the parametric definitions are

γ′ =
4

2 + η2(D − 2)

C ′2 = −ηγ′D − 2
2

A2 =
4V0

D − 2
1

γ′(Dγ′ − 2)
.

(3.2)

The forms of γ′ and C ′2 can be obtained from the scaling solution parameters γ and C2,
respectively, by substituting α = 2

η−η (i.e. the ρ = 0 condition) into the expressions (2.18).
The form of A2 has a similar relation to its counterpart, C1, which is only manifest in a
gauge in which the constant part of the scalar is chosen to vanish: defining a new radial
coordinate

R = Ar (3.3)

and shifting the boundary coordinates as

{t, xi} → A{t, xi} (3.4)

we have the solution

ds2 = A2Rγ
′
ηµνdx

µdxν +
dR2

A2Rγ′

φ(r) = C ′2 lnR
(3.5)

Indeed, A2 = C1(α→ 4
η − η).

Let us stress that the aforementioned substitution for α is only a parametric manipu-
lation designed to derive the form of the vacuum solution; the solution exists for any values
of {α, η} consistent with other physical principles mentioned elsewhere.

One can perform a perturbative analysis in the parameter η by considering η � 1,
which means a potential that is effectively constant over a large range of φ. Because η
enters quadratically in the exponent γ′ but linearly in C ′2, the solution (3.1), to first order
in η, looks like AdS with a slowly rolling scalar field . The scalar Klein-Gordon equation
expanded about the AdS background to first order in η,

�φ = −V0η +O(η2) , (3.6)

reveals logarithmic behavior for φ near the boundary, to leading order in r.
While this domain wall solution makes clear its relation to our scaling solutions and

to Dp-brane geometries, we wish to briefly make contact with other literature on solitonic
supergravity domain walls by rewriting this metric in new, conformally flat coordinates: a
harmonic function on the (one-dimensional) transverse space multiplying a Minkowski line
element plus a “radial” term, describing a solitonic D− 2 brane in a D-dimensional space.

Labeling the new transverse coordinate y, we can write the metric as

ds2 = H(y)x(ηµνdxµdxν + dy2) , (3.7)
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which defines the harmonic function and radial coordinate as

(Ar)γ
′

= H(y)x , ±dy =
dr

(Ar)γ′
. (3.8)

Assuming that γ′ 6= 1, integrating gives

H(y) = (1±my) , x =
γ′

1− γ′
(3.9)

where we define
m = A(1− γ′) (3.10)

and have chosen the integration constant such that the constant in H(y) is equal to one.
The full solution, with the scalar field, is thus

ds2 = H(y)
γ′

1−γ′ (ηµνdxµdxν + dy2)

eφ = H(y)−η
D−2

4
γ′

1−γ′

(3.11)

The likeness of this solution to the noncompact part of Dp-brane metrics along with the
running scalar is no coincidence, because various dimensional reductions of 10- and 11-
dimensional maximal supergravities give rise to a panoply of such solitons in the corre-
sponding lower-dimensional supergravities [34]. The interpolating structure is evident: the
metric asymptotes to flat space as y → 0, and to near-horizon form with the asymptotically
flat part decoupled as y → ±∞. Note the ± sign in H(y), which enables one to construct
domain walls with Z2 symmetry.

Further defining the constant

∆ = η2 − 2
D − 1
D − 2

(3.12)

enables us to write the full solution as

ds2 = H(y)
4

(D−2)(∆+2) (ηµνdxµdxν + dy2)

eφ = H(y)−
2η

∆+2

m2 =
−V0(∆ + 2)2

2∆

(3.13)

This matches the solution in [32], for example.
When γ′ = 1, we instead have the relation

H(y)x = Ar = e±Ay , (3.14)

again with an integration constant chosen for simplification. Now,

η2 =
2

D − 2
, A =

2
D − 2

√
V0 , ∆ = −2 (3.15)
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and the full solution reads

ds2 = e±
2

D−2

√
V0y(ηµνdxµdxν + dy2) ,

φ = ∓
√

2V0

D − 2
y

(3.16)

Returning to the form (3.1), one sees that, at least for γ′ > 1, the domain wall spacetime
is well-suited for holographic correspondence. In accord with the discussion in section 2,
it is well-behaved at large r, and more importantly, it has a boundary in the AdS sense.
Specifically, the coordinate time to r =∞ along a null (timelike) geodesic is finite (infinite),
despite an infinite proper radial distance to the boundary from any point in the interior:∫ tf

ti

dt =
∫ ∞
ri

dr

rγ′
= finite∫

ds =
∫ ∞
ri

dr

r
γ′
2

=∞
(3.17)

Crucially, the domain wall spacetime is conformal to AdS:

ds2
AdS = rγ

′−2ds2
DW = Ar2(γ′−1)ηµνdx

µdxν +
dr2

Ar2
(3.18)

One should think of this metric as AdS in “interpolating coordinates”, where the value
of γ′ determines whether the boundary lies at r → ∞ or r = 0. That is to say, γ′ = 0
gives AdS in conformally flat coordinates with a boundary at r = 0, γ′ = 2 gives AdS in
coordinates with the boundary at r →∞, and other values on either side of γ′ = 1 simply
stretch one of these limiting spacetimes.7

These interpolating coordinates provide a convenient heuristic to understand why do-
main walls with γ′ < 1 do not have a boundary. Consider the construction of such domain
walls by multiplying the AdS metric (3.18) by the conformal factor, Ω(r) = r2−γ′ . This
vanishes at r = 0. Therefore, if we start from an AdS metric with the boundary at r = 0,
the map to the domain wall spacetime will not be faithful because the infinite volume near
the boundary is cancelled by the degenerating conformal factor.

In addition to not having a boundary, the extremal γ′ < 1 domain walls have ill-defined
thermodynamic properties. Generally, the local nature of near-horizon physics tells us that
a physically acceptable extremal solution should be viewed as a zero temperature limit of a
near-extremal solution, particularly if it is singular [35]. Presenting the finite temperature
domain wall solution,

ds2 = −(Ar)γ
′
(1− (

rh
r

)ω
′
)dt2 +

dr2

(Ar)γ′(1− ( rhr )ω′)
+ (Ar)γ

′
dxi · dxi , (3.19)

where
ω′ =

D

2
γ′ − 1 , (3.20)

7The value γ′ = 1 is once again special, as the metric is not AdS; we recognize this from the cases of

the near-horizon metrics of NS5 and D5-branes of type II supergravity, a connection we discuss more later.
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we see that as γ′ → 2
D , A diverges and the emblackening factor becomes identically one for

all temperatures. When γ′ < 2
D , A becomes imaginary, so there is clearly some region of

γ′ < 1 of which we should be suspicious.
We will shortly have more to say about why γ′ < 1 domain walls should be rejected

as unphysical.

3.2 Holography

Just as the AdS/CFT correspondence was fundamentally built on the physics of D3-
branes and subsequently extended to apply to a priori unrelated asymptotically AdS
spaces, the validity of our duality for arbitrary Lagrangians of gauged supergravity-inspired
form (2.16), and arbitrary domain wall parameters (3.2), relies on the formal establishment
of DW/QFT correspondence in connection to nonperturbative D-branes in string theory.
We give a brief review; for details, see [13, 14, 16, 36].

The basic idea is that for D-branes with p < 6, there is a formally well-defined limit
in which gravity decouples at intermediate energies, and therefore one can describe the
worldvolume theory using the strong field dynamics of the supergravity solution. This
theory, the toroidal reduction of D= 10, N=1 super-Yang-Mills to p+2 dimensions, has
a dimensionful coupling, gYM , that runs with scale. This maps to a variable bulk dilaton.
Consider the type II supergravity bosonic string frame action with the NS 2-form set to zero,

S =
1

(2π)7l8s

∫
d10x
√
−g
(
e−2φ(R+ 4(∂φ)2)− 1

2(p+ 2)!
F 2
p+2

)
(3.21)

A Dp-brane is electrically charged under the RR field strength as Fp+2 = dAp+1. The
D-brane solution is

ds2 =
1

Hp(r)1/2
ds2
Mp,1

+Hp(r)1/2(dr2 + r2dΩ2
8−p)

eφ = gsHp(r)(3−p)/4

Ap+1 = g−1
s (Hp(r)−1 − 1)

(3.22)

with H a harmonic function on the transverse (9− p)-dimensional space, chosen as

Hp(r) = 1 +
cpgsNl

7−p
s

r7−p (3.23)

where cp is a p-dependent constant chosen to satisfy Maxwell’s equation, d ? Fp+2 = 0. N
is the quantized RR flux through S8−p.

We now take the low energy, ls → 0 limit, keeping fixed both the energy of a stretched
string ending on one of the stack of D-branes, as well as the coupling g2

YMN , where
g2
YM = gsl

p−3
s . We also take gs → 0, hence working at tree level in the closed loop string

perturbation expansion. Doing so reveals that, as for p = 3, we decouple the asymptotically
flat region and end up with a near-horizon geometry with metric

ds2 =

(
r7−p

cpgsNl
7−p
s

)1/2

ds2
Mp,1

+

(
cpgsNl

7−p
s

r7−p

)1/2

(dr2 + r2dΩ2
8−p) (3.24)
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This geometry is a warped product of a p + 2-dimensional domain wall with an (8 − p)-
sphere with an r-dependent radius. For p < 3, the curvature is well-behaved at small r,
but the effective string coupling eφ blows up; for p > 3, the situation is opposite.8

The domain wall is conformal to AdS, and in fact, passing to the conformal frame
— known as the “dual frame” in the DW/QFT literature — gives us a product space
AdSp+2 × S8−p:

g̃µν = (Neφ)
2
p−7 gµν ∼ (g2

YMN)−1r
3−p

2 gµν (3.25)

and so, defining a new so-called “horospherical” radial coordinate

u2 ∼ (g2
YMN)−1r5−p (3.26)

this metric reads as9

d̃s
2
∼ u2ds2

Mp,1
+
du2

u2
+ dΩ2

8−p (3.27)

This suggests identification of the radial coordinate u with the energy scale of the worldvol-
ume SYM theory, naturally incorporating the energy-distance relation of Dp-brane super-
gravity probes [15]. This frame allows a simple sphere reduction ansatz, in which the flux
is through the sphere and the D=(p+ 2)-dimensional action consists only of the universal
sector with gravity and the scalar alone. Passage back to the (p+ 2)-dimensional Einstein
frame reveals a domain wall metric.

One can calculate the near-extremal entropy of the (p + 2)-dimensional domain wall
solution compactified on a torus with S1 radii L,

S =
A

4GD
∼ LpN2(g2

YMN)
p−3
5−pu

9−p
5−p , (3.28)

which is the correct result [13]. Written in terms of an effective dimensionless Yang-Mills
coupling

geff(E)2 = g2
YMNE

p−3 , (3.29)

and identifying E ∼ u, the entropy is

S ∼ LpN2Ep(geff(E))
p−3
5−p . (3.30)

In this form, the departure from conformality when p 6= 3 is clearest.
We have only sketched the derivation, having been cavalier about factors of ls and left

out the conformal frame definitions of φ and Fp+2. What we wish to emphasize are the
following three things:

1. The scalar field is nonconstant in the dual frame, an obvious fact since the conformal
transformation on the metric leaves the scalar alone.

8The domain wall and sphere parts of the metric contribute to the curvature divergence in concert, so

that one need only know where the sphere becomes small to know where the curvature blows up.
9The one exception to this is the case p = 5, for which the variable u is ill-defined and the conformal

geometry is not AdS7 × S3, but rather M5,1 × R× S3.
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2. These brane solutions are simply special (and 1
2 -supersymmetric) cases of the domain

walls we considered in section 3, where the value of η is given in terms of p = D− 2.

Specifically, one can show that in the language established in section 3, the domain
walls that come from D-branes have [14]

γ′ =
2(9− p)

p2 − 7p+ 18
(3.31)

Alternatively, they are the vacua of theories with

η2 =
2(p− 3)2

p(9− p)
(3.32)

As a check, we note that for p = 3, γ′ = 2 and η = 0 as required. We also point out
that as anticipated earlier, the case p = 5 gives a 7-dimensional domain wall with
γ′ = 1, which is not conformal to AdS7.

We present the fourth reason why domain walls with γ′ < 1 are not suitable for
holography: when p > 5, for which γ′ < 1, there is not a well-defined brane decoupling
limit.10 All branes for which there is such a limit have γ′ ≥ 1, by inspection of (3.31).
Therefore, when γ′ < 1 one has no right to make an extension from the discretuum of
brane solutions to the continuum of domain wall solutions and expect a holographic
duality to hold.

3. One can apply this analysis to near-extremal D-branes too: start instead from the
10-dimensional finite temperature D-brane solution,

ds2 =
1

Hp(r)1/2

(
−f(r)dt2 + dxi · dxi

)
+Hp(r)1/2

(
dr2

f(r)
+ r2dΩ2

8−p

)
(3.33)

where
f(r) = 1−

(rh
r

)7−p
(3.34)

Performing the above conformal transformation (3.25), and transforming once again
to the u coordinate (3.26), yields

d̃s
2
∼ u2(−f(u)dt2 + dxi · dxi) +

du2

u2f(u)
+ dΩ2

8−p (3.35)

where

f(u) = 1−
(uh
u

) 2(7−p)
5−p (3.36)

The noncompact part of this geometry is at finite temperature, but is not AdS-
Schwarschild. Upon reduction to D dimensions and passage back to the Einstein

10The case of γ′ = 1 itself — that is, fivebranes — does admit a decoupling limit, though it requires

separate analysis. D0 branes also have γ′ = 1, but our treatment of domain walls does not apply to two

dimensions in which several of our formulae break down; from the standpoint of the D0-brane theory itself,

the duality is not problematic.
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frame, one obtains the D-dimensional finite temperature domain wall solution (3.19)
with

ω′ =
2p(7− p)

p2 − 7p+ 18
(3.37)

This is positive for all 0 < p < 7. As a check, we note that for p = 3, ω = 4,
corresponding to AdS5-Schwarzchild.

Having elaborated on the relevant properties of domain walls, we return to the goal
at hand: construction of interpolating solutions between the finite temperature scaling
solution and the domain wall.

4 Numerical construction of interpolating solution

The interpolation we construct connects the two spacetimes (2.17) and (3.1), along with
their associated scalar and gauge fields. This is done numerically, using a shooting technique.

Let us summarize the method. The equations of motion fix the relation between fields
at the horizon, r = rh, save for some number of free parameters whose horizon values
determine the full set of initial data. One must also use symmetries of the horizon metric
to eliminate gauge degrees of freedom. Thusly, we can vary the temperature of the black
hole and, ultimately, the boundary conditions at large r by varying the horizon values of
fields.

As a numerical matter, one must start integration at some small distance outside the
horizon to seed the perturbations, so we develop the fields in a power series about the
horizon. Integrating out to infinity, one finds that for sufficiently low temperatures, the
metric looks like the finite temperature scaling solution over a large but finite range of r,
after which the growing perturbations become large enough to backreact upon the metric
and induce its asymptotic form.

Consider the solution at the horizon. By definition of the horizon, and by separate
rescalings of t and the boundary coordinates {xi}, we can fix

U(rh) = 0 , U ′(rh) = V (rh) = 1 . (4.1)

(This gauge is only appropriate for nonzero temperatures.) We expand the fields to second-
order in the expansion parameter ε,

U(rh + ε) ≈ ε+
u2

2
ε2 + . . .

V (rh + ε) ≈ 1 + v1ε+
v2

2
ε2 + . . .

φ(rh + ε) ≈ φ0 + φ1ε+
φ2

2
ε2 + . . .

(4.2)

with Maxwell’s equation determining the field strength to arbitrary order in terms of these
expansions,

A′t =
Q

eαφV
D−2

2

(4.3)
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Then the field equations give the following relations in terms of two free parameters, {φ0, Q}:

v1 =
( 2
D − 2

)(
V0e

ηφ0 − 2Q2e−αφ0

)
φ1 = −

(
V0ηe

ηφ0 + 2Q2αe−αφ0

)
v2 =

1
2
v2

1 −
( 1
D − 2

)
φ2

1

φ2 =
(D − 2

2

)(
2v2 − v2

1

)
· v1

φ1

u2 =
(
− V0η

2φ0e
ηφ0 + 2Q2αe−αφ0(αφ1 + (D − 2)v1)− D − 2

2
v1 − 2φ2

)
· 1
φ1

(4.4)

At large r, the field equations near the domain wall boundary dictate the falloff of the
fields as

U ≈ Ucrγ
′
+ . . .

V ≈ Vcrγ
′
+ . . .

φ ≈ C ′2 ln r + φc + . . .

At ≈ µ+
ρ

rαC
′
2+γ′D−2

2

+ . . .

(4.5)

where we have kept only a handful of leading and subleading terms. We are free to normalize
our horizon coordinates such that the asymptotic domain wall is Poincaré symmetric,
Uc = Vc. (We do so with the understanding that the entropy density scales accordingly
— see appendix A for a deeper discussion of this issue). It is our task, then, to show this
falloff numerically.

The constants {Uc, φc} in the numerical large r asymptotic region will not necessarily
be equal to those in (3.1): we need to present a more general domain wall solution which
allows us to account for differences in gauge between the horizon and infinity. Taking r → r

c

and normalizing the boundary coordinates appropriately gives a solution

ds2 = c2−γ′(Ar)γ
′
ηµνdx

µdxν +
dr2

c2−γ′(Ar)γ′

φ(r) = C ′2 lnAr − C ′2 ln c
(4.6)

c is an unconstrained gauge parameter which relates asymptotic constants in the simulation.
Solving for c yields the relation

Uc = A2e
−
„

2−γ′
C′2

«
φc

(4.7)

If we set η = 0, then we will interpolate between the modified Lifshitz solution and AdS.
This was done in [26] at zero temperature by solving for the exact form of the perturbation
to linear order. In appendix A, we construct the analogous numerical solutions for the finite
temperature modified Lifshitz solution, showing that at successively lower temperatures,
the power law relation (2.24) is increasingly obeyed. The lack of Poincaré invariance in
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the zero temperature solution implies the presence of an analytically unknown coefficient
in the entropy due to the stretching of the spacetime between the horizon and infinity; but
as the dimensionless temperature T̂ → 0, this coefficient stabilizes to its zero temperature
value, and power law behavior is observed.

Here we present the results of one simulation with η 6= 0. Specifically, we choose the
set of parameters

D = 4 , η =
1
2
, α = 1 , V0 = 6 , rh = 1 . (4.8)

This translates to small r scaling solution parameters

β =
38
25
, γ =

18
25

C2 = −24
25
, ρ =

√
210
196

, C1 =
1875
434

(4.9)

and large r domain wall parameters

γ′ =
8
5
, C ′2 = −4

5
, A2 =

75
44
. (4.10)

The interpolation is shown in figure 1. The upper plot shows the metric turnover: for
a large but finite range in r, V (r) scales as rγ as seen in the slope of the plot. (Though we
did not show it, one can of course directly extract the IR power law relation for U(r) as
well.) At large r, both metric components scale with domain wall exponent γ′ = 8

5 , where
the turnover on the V (r) plot happens around ln r ∼ 5.

The lower plots show the scalar and field strength, in which we plot elucidating combi-
nations of the fields and r based on the asymptotic scalings described above. In particular,
in the large r domain wall region, we have

A′t(r) ∼ r−
4
5 ∼ eφ (4.11)

by plugging the values (4.10) into the falloff (4.5).
One can also extract the value of φc from the scalar plot and compare it to the value

Uc (not shown); the numerical values for this trial, to six significant figures, are

Uc = 19.4192 , φc = 4.86591 ; (4.12)

the relation (4.7) is satisfied to great accuracy.

5 Generalized scale invariance

Having shown that the scaling solutions (2.17) can indeed asymptote to domain walls (3.1)
to form a global geometry, we ask what domain wall holography can tell us about this
solution.

Our scaling solution is not scale-invariant for η 6= 0, but its thermodynamics are
governed by power law relations. One can ask what aspects of this IR scaling behavior can
be explained in connection to the symmetries of the domain wall. More specifically, the
UV domain wall spacetime and hence the theory at hand has Poincaré symmetry, but also
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log(r)

U(r)/V(r)

V(r)

r

At’ r4/5

r

eĳ r4/5

Figure 1. Behavior of fields in the interpolating solution. a. Upper : The metric component
V (r) = gii, as well as the ratio U(r)

V (r) = −gtt

gii
, rescaled to fit on the same graph. The turnover in

the slope of the former curve, and the flatness of the latter, indicate the domain wall asymptotics.
b. Lower left : The field strength, multiplied by its asymptotic domain wall power of r. c. Lower
right : The exponentiated scalar field, multiplied by its asymptotic domain wall power of r.

the generalized conformal structure explained earlier. It is worthwhile to consider if the IR
scaling solution has any such “hidden” symmetry as well: although the scaling solution is
not scale invariant, one might expect it to possess a “generalized scale invariance,” manifest
in the conformal frame defined by the domain wall.

To motivate this prospect, one may think of the flow from the domain wall to the
scaling solution as a symmetry-breaking flow: the IR flux breaks the Lorentz symmetry
of the asymptotic domain wall. But in Einstein frame, one cannot easily tell whether this
particular solution leaves the domain wall’s generalized scale invariance intact in the IR.
That is to say, the presence of the IR flux might be expected to preserve that part of the
generalized conformal structure which is independent of the Lorentz symmetry-breaking.

We now show that this is indeed the case, by passage to the conformal frame.
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The DW/QFT correspondence says that we should use the UV domain wall geometry
to determine the conformal factor, as discussed in section 3. This is easily done, writing
the factor in terms of r and converting it to an expression in terms of the field φ. With
the conformal factor in hand, we note that φ has a different r-dependence in the IR scaling
solution, and therefore, the IR metric receives a different multiplicative factor in terms of
r. Altogether, we have the new global conformal frame metric which interpolates between
two scale-invariant metrics: a modified Lifshitz solution in the IR and an AdS plus rolling
scalar solution in the UV.

For clarity, we reproduce the interpolating solution in Einstein frame as follows. The
metric is

ds2
IR = −C1r

βf(r)dt2 +
dr2

C1rβf(r)
+ rγdxi · dxi

ds2
UV = c2−γ′(Ar)γ

′
ηµνdx

µdxν +
dr2

c2−γ′(Ar)γ′

(5.1)

and f(r) is defined in (2.21). The scalar field is

φ(r) =

{
C2 ln r r → 0

C ′2 ln A
c r r →∞

(5.2)

The field strength is

A′t(r) =
ρ

eαφV
D−2

2

∼

{
ρr−(αC2+γD−2

2
) r → 0

ρr−(αC′2+γ′D−2
2

) r →∞
(5.3)

We set c = 1 for simplicity, remembering that a generic choice of horizon coordinate
normalizations will change this value.

From ds2
UV , define

d̃s
2

UV = Ω(r)UV ds2
UV (5.4)

where
Ω(r)UV = (Ar)γ

′−2 (5.5)

This will give us a UV AdS spacetime. In terms of φ, this is proportional to the potential,

Ω(φ) = eηφ (5.6)

On the global solution, therefore, Ω(r) takes the following limiting forms:

Ω(r) =

{
rβ−2 r → 0

(Ar)γ
′−2 r →∞

(5.7)

where we have made use of algebraic relations ηC2 = β−2 and ηC ′2 = γ′−2, by inspection
of (2.18) and (3.2), respectively. Hence, the conformal frame metric is

d̃s
2

IR = −C1r
2(β−1)f(r)dt2 +

dr2

C1r2f(r)
+ rβ+γ−2dxi · dxi

d̃s
2

UV = (Ar)2(γ′−1) ηµνdx
µdxν +

dr2

(Ar)2

(5.8)
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Both the IR and UV metrics now have scale invariance, anisotropic in the former and
isotropic in the latter. In other words, the general scaling solutions have a generalized
scale invariance, manifest only in this conformal frame. Actually, the IR metric has its
scale invariance broken by nonzero temperature, but the emergence of finite temperature
Lifshitz behavior is still non-generic.

Because these solutions lie in the IR of a global solution asymptoting to a domain
wall, and because one uses the domain wall alone to determine the Weyl factor Ω(φ), this
generalized scale invariance follows from the generalized conformal structure of the UV
domain wall, itself grounded in the identical structure of nonconformal D-branes.

To clarify the solution, we can define separate new radial coordinates in the IR and the
UV which will restore the gauge choice gtt = −grr 6= gii, thereby reinstituting horospherical
coordinates in the UV AdS spacetime. (Note that as it stands, the UV metric is AdS in
previously defined interpolating coordinates, (3.18).) Define the IR coordinate u as

(β − 1)u = rβ−1 (5.9)

and the UV coordinate R as
A(γ′ − 1)R = (Ar)γ

′−1 (5.10)

Then the metric is

d̃s
2

IR = −C̃1u
2f(u)dt2 +

du2

C̃1u2f(u)
+ C̃3u

eγdxi · dxi
d̃s

2

UV = −(ÃR)2dt2 +
dR2

(ÃR)2
+ (ÃR)2dxi · dxi

(5.11)

with conformal frame parameters

γ̃ =
β + γ − 2
β − 1

, C̃1 = C1(β − 1)2 , C̃3 = (β − 1)eγ , Ã = A(γ′ − 1) (5.12)

and an emblackening function

f(u) = 1−
(uh
u

)eω
, ω̃ =

ω

β − 1
(5.13)

We note that the definitions (5.12) guarantee small conformal frame curvatures, given small
Einstein frame curvatures.

The full solution includes the scalar field,

φ =

{
C̃2 ln (u(β − 1)) r → 0

C̃ ′2 ln ÃR r →∞
(5.14)

where

C̃2 =
C2

β − 1
, C̃ ′2 =

C ′2
γ′ − 1

(5.15)

To find the field strength in the new coordinates, we need to transform the two-form
F = 1

2Fµνdx
µ ∧ dxν , not just the tensor components. Doing so reveals an IR two-form

FIR ∼ u
D−2

2
γ
β−1du ∧ dt (5.16)
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and UV two-form
FUV ∼ R2−D− eC′2(α− η

2
(D−4))dR ∧ dt (5.17)

The full conformal frame solution, then, is (5.11), (5.14), (5.16), and (5.17), with the
associated parametric definitions. Note that when β = γ′ = 2 — which would be the case
for the theory with constant potential, giving rise to an interpolation between the modified
Lifshitz solution and AdS — the conformal frame and the Einstein frame are identical, and
all of these formulae reduce to tautology.

The two radial coordinates u (in the IR) and R (in the UV) dualize to the energy
scale of the field theory, each in its respective regime. If we are to consistently identify the
bulk radial direction with the energy scale, then it must be true that the two coordinates
smoothly interface at intermediate energies: when u decreases, so must R, and both must
have a strictly positive range. The coordinates share the relation

u = AR(β−1)/(γ′−1) , (5.18)

where A = 1
β−1(A2−γ′(γ′−1))

β−1
γ′−1 . When β > 1 and γ′ > 1, the relationship is as required.

By definition, the conformal frame solutions are those of the conformal frame action,
with Lagrangian density

L̃ =
√
−g̃e−η(D−2

2
)φ
(
R̃+

(
1 +

η2

2
(D − 1)(D − 2)

)∂µφ∂̃µφ
2

+ e(α+η)φFµνF̃
µν − V0

)
The tilde’s in this action, as usual, represent quantities calculated using the conformal
frame metric, g̃µν . One can easily confirm that the gauge field scalings (5.16) and (5.17),
for example, satisfy Maxwell’s equation,

∂µ

(√
−g̃e(α− η

2
(D−4))φFµν

)
= 0 (5.19)

To summarize, the fact that we recover the finite temperature modified Lifshitz solution
in the IR conformal metric (5.11) indicates that the dynamics of the dual relativistic
field theory at low energies are determined in some fashion by those of scale-invariant
fixed points.11

Because this connection is a direct result of the inherent structure of the domain wall
metric, it would be interesting to answer the question, “what kinds of matter Lagrangians
coupled to the universal Einstein-scalar sector can support solutions without generalized
scale invariance?” We elaborate on this in the conclusion.

6 Domain wall holography and effective field theory

The solution we have constructed interpolates between two exact solutions of our single-
exponential, domain wall gravity theory. We found ourselves restricted to such a theory

11We note, without clear understanding of its meaning, that for β > 1 and γ′ > 1 as here, we have

γ̃ = 2
z̃
< 2, which is the z̃ > 1 condition of an Einstein frame Lifshitz gravity dual.

– 24 –



J
H
E
P
0
2
(
2
0
1
1
)
0
1
3

upon demanding that the scaling ansatz exactly solve the theory defined by the general
action,

S = − 1
16πGD

∫
dDx
√
−g
(
R+ f(φ)FµνFµν +

1
2

(∂φ)2 + V(φ)
)
, (6.1)

As noted in the introduction, this is because the scaling ansatz, which models generic near-
horizon behavior of zero entropy extremal solutions, singles out the term in some general
V(φ) that dominates at small r. Including subleading terms in r in our ansatz — essentially
near-horizon corrections — would turn on other contributions to the potential.

For these reasons, our numerical work has broader suggestive power, specifically to
theories with scalar potentials that are dominated by a single exponential term over a
large range of field space but have an AdS critical point. We give a schematic example in
the introduction, equation (1.7); more generally, we refer to the behavior

V(φ) ∼

{
−V0e

ηφ r → 0

−V ′0 r →∞
(6.2)

Suppose that our theory was UV-completed with a full string/M-theory-derived poten-
tial with this behavior; the scaling solution of this paper would then be only approximate.
If the scaling solution at small r could be patched onto an approximate domain wall solu-
tion at intermediate r whose only nonzero matter field is the scalar, then the interpolation
between the domain wall and the AdS critical point at large r would be guaranteed: the
scalar would just roll toward its AdS critical point, in the manner of an RG flow. All other
fields are turned off.

Whether the interpolation could actually be constructed in this imaginary theory is
a matter of numerics, not argument: one cannot assume the existence of an interpolating
solution in a given theory without actually constructing it. But it seems reasonable that
given a stringy effective action, a more complicated extremal solution to that theory which
approaches our scaling solution in the near-horizon limit would interpolate to the approx-
imate domain wall solution of that theory at intermediate energies. This should also be
true for an ad hoc action with a scalar potential as in (6.2).

In fact, this sort of analysis leads one to consider DW/QFT as an effective holographic
tool, applicable in settings far more general than domain wall supergravities, where we use
“effective” in the field theory sense. Our assertion is that even when the UV completion of
some bulk theory is unknown, if that theory admits an approximate domain wall solution
at some intermediate value of r then one can use DW/QFT to develop a holographic map.

Let us explore this idea.
The central tenet of effective field theory, informed by the philosophy of the renormal-

ization group, is that physics at low energies should not be sensitive to physics at high
energies. Naively, AdS/CFT seems to violate this idea: given an effective field theory, one
needs to know something about its UV physics, namely whether the theory is conformal,
in order to know whether it has a well-defined IR gravity dual. Of course this is an in-
correct mode of thought, because gauge/gravity duality, it can be said, is not a right, but
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a privilege of conformal field theories (and their deformations and subsequent holographic
extensions). There is no a priori reason why every field theory should have a gravity dual.
From what we know so far, one could argue that classifying the types of field theories which
might have gravity duals boils down to finding bulk spacetimes with boundaries, in which
case the attendant isometries dictate the field theory symmetries.

Actually, we can consider an elementary case in which the bulk has no AdS solution
in the UV and we know how to treat it holographically: the case of a positive mass scalar
field. As a bulk field dual to an irrelevant CFT operator, the scalar blows up at large r.
At the radius at which its backreaction ruins the AdS asymptotics, we work with a radial
cutoff, dual to working with an effective field theory below the corresponding energy scale.
To incorporate the backreaction of the scalar would be to find the full UV completion of the
theory; in its absence, one works with the effective AdS boundary and proceeds essentially
as usual.

Analogously, one is entitled to use DW/QFT in settings beyond those in which the
domain wall geometry is a true vacuum of the theory — one can work with a cutoff
boundary at finite r, at which the bulk fields will have falloffs characteristic of a domain
wall boundary. This is exactly what one does in the case of nonconformal D-branes,
fundamental strings, and NS5 branes: the supergravity approximation cannot be trusted
for large (or small) r, i.e. high (or low) energies. Of course, for some of these branes, the
UV completion is given in terms of M-theory solutions in one greater spacetime dimension,
which is interesting in and of itself: even in cases like the D4-brane where we know that
the solution uplifts to an AdS7 × S4 vacuum in the UV, we can still define an effective
ten-dimensional nonconformal holography. This M-theory resolution of strong effective ten-
dimensional string coupling is obviously a deep and special case, but it alludes to the general
possibility that even when a potential (borne from string/M-theory compactification or
otherwise) has no AdS vacuum, DW/QFT can be used at intermediate energies.

To rephrase, accepting the validity of nonconformal holography demands that it should
have the same role as AdS holography in situations where the bulk must have a UV radial
cutoff. In the absence of a continuum limit, even in AdS/CFT, one cannot be sure that
holography is describing a theory that is not sick; this is no different in the nonconformal
case and permits us to extend its regime likewise.

We can summarize when it is safe to use domain wall holography in theories that admit
(at least approximate) domain wall vacua.

1. When a phenomenological theory admits an exact domain wall solution, like our the-
ory (2.16), domain wall holography is on firm footing. Without a string/M-theory
embedding, the theory is not quantumly well-defined; when an exact domain wall
solution does arise in a consistent truncation of string/M-theory, domain wall holog-
raphy is valid even on the level of quantum corrections.

In fact, our action (2.16) can indeed be obtained in such a manner, where α and
η are fixed by the compactification. Specifically, [37] showed that starting with the
canonical S4, S5 and S7 sphere compactifications of string and M-theory, one can
deform these spheres by taking certain moduli to a limit in which the compactification
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on Sn becomes one on Sa×Rb, where a+b = n. The resulting D-dimensional effective
Lagrangian, suitably (and consistently) truncated to a single scalar, reads

S = − 1
16πGD

∫
dDx
√
−g
(
R+ e

−
q

2
D−2

φ
FµνF

µν +
1
2

(∂φ)2 − V0e

q
2

D−2
φ
)

; (6.3)

that is, −α = η =
√

2
D−2 . Unfortunately, our scaling solution does not solve these

actions — it reduces to the AdS2×RD−2 solution — and so we make no use of them
in this instance.

2. When a bulk action has a potential V(φ) which has a large r AdS vacuum, we can
still use domain wall holography at low and intermediate energies if V(φ) admits an
approximate domain wall solution there, as exemplified in (1.7) and (6.2). (Again,
issues of UV completion come to bear on whether this is a microscopically allowed
map.) The bulk fields that run with scale in the domain wall region eventually
stabilize in AdS. For instance, in nonconformal (p+1)-dimensional super-Yang-Mills,
the two-point function of a ∆ = p+1 operator dual to a massless scalar field, as shown
in [16], has scale-dependence determined by generalized conformal invariance as

〈O(x)O(0)〉 ∼ N2(g2
eff(|x|))

p−3
5−p

1
|x|2∆

(6.4)

where g2
eff(|x|) = g2

YMN |x|3−p, essentially as defined in (3.29). In the domain wall
region, this function runs with scale; at the eventual AdS critical point, geff runs
smoothly to a constant and the conformal structure of the two-point function is
recovered.

In connection to the scaling solution studied in this paper, these arguments serve to
suggest that we do not need to know whether the potential V(φ) has an AdS vacuum at
large r in order to know something about the universal behavior of the dual field theory.

As a final point, the relation between higher-dimensional AdS solutions of M-theory
and lower-dimensional domain wall solutions of string theory may be a more general aspect
of the existence of DW/QFT. In [19], the authors show that any D-dimensional domain
wall gravity theory with action

S = − 1
16πGD

∫
dDx
√
−g
(
R+

1
2

(∂φ)2 − V0e
ηφ
)
, (6.5)

can be derived by toroidal dimensional reduction of a pure AdS gravity, where the toroidal
dimension is related to the value of the potential parameter η. This leads one to speculate
that all holography is intimately connected to the existence of some AdS vacuum, be it in
the same spacetime dimension as the theory one is considering or otherwise. This would be
an interesting conclusion that would generalize the way the strong coupling singularities of
type IIA solutions are resolved.
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7 Discussion and prospects

To recapitulate, the scaling behavior of low temperature, relativistic quantum field theories
with finite charge density with IR gravity duals (5.1) can be understood via domain wall
holography and an inherited generalized scale invariance (broken by the finite temperature).
The power law s-T relation of the bulk ansatz encodes the physics of a system with a unique
zero temperature ground state, though the thermodynamic description breaks down due
to a physical singularity in the extremal limit.

We have numerically constructed the interpolating solution between the near-extremal
scaling solution in the IR and the asymptotic domain wall vacuum in the UV, thus per-
mitting the mapping of the near-horizon physics to the low-energy dynamics of the dual
field theory. The formalism developed in [16, 18] ensures that the holographic relation is
faithful and thermodynamically well-defined.

We also made some comments on the nature of domain wall holography for bottom-up
actions with no connection to type II supergravity, delineating which domain walls are
amenable to holography and arguing for an effective role of domain wall holography in
settings where an exact domain wall vacuum does not exist.

Let us emphasize that the generalized scale invariance of the IR solution followed, via
the construction of the full interpolating solution, directly from the generalized conformal
invariance of domain walls which is itself descendant of M-theory. The D4 brane of 10-
dimensional, type IIA supergravity descends from the 11-dimensional solitonic M5-brane
wrapped on the M-theory circle, for example, and similarly for the IIA fundamental string
from the M2-brane. By using S- and T-duality on, say, the D4 brane supergravity solution,
one can generate all branes of type II supergravity, including the D-branes of course; there-
fore, insofar as one defines their generalized conformal structure as the presence of a metric
conformal to AdSp+2 × S8−p, the entire domain wall holography has a non-perturbative
connection to M-theory in this way. Domain walls with no necessary relation to D-brane
near-horizons should still be considered as a rung on this non-perturbative ladder, just as
any asymptotically AdS spacetime can be treated holographically in its own right.

It would be interesting to investigate what matter Lagrangians, when coupled to an
Einstein-scalar sector with a domain wall vacuum, would break this generalized scale in-
variance. One might phrase this as follows. Suppose our potential is still given as

V(φ) = −V0e
ηφ . (7.1)

We know that the domain wall metric will be conformal to AdS via the conformal factor
Ω(φ) = eηφ, so the Einstein frame metric

ds2 = −r2eηφdt2 +
dr2

r2eηφ
+ V (r)dxi · dxi (7.2)

will have conformal frame scale invariance. What type of matter Lagrangian can support
this metric?

It would also be worthwhile to find a string/M-theory embedding of our scaling solu-
tion, or a generalization of it. The string theory-derived effective action (6.3) which we
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presented earlier could not accomodate it, but there are large families of similar actions of
domain wall gravities, as laid out in [38]. The domain wall would generally be supported
by some number of scalars, which would be no impediment to use of DW/QFT.

Lastly, it would clearly be nice to delve deeper into the thermodynamics of this system,
though that has largely been done in the recent papers cited earlier [29, 30]. Perhaps adding
fermionic degrees of freedom to the theory would be worthwhile as well.
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A Numerical study of finite temperature modified Lifshitz solution

We clarify a lingering issue in the extraction of field theory thermodynamics from inter-
polating gravity solutions, as we present the numerical construction of the interpolating
solution for a finite temperature black hole with IR Lifshitz scaling.12

The motivation for doing so is that without patching the IR spacetime onto its UV
AdS vacuum, the entropy density for the dual field theory can only be known up to an
overall coefficient. The IR black hole provides the scaling behavior of the entropy, but
because the spacetime is warped as the IR solution is patched onto an asymptotic AdS in
the UV, the normalization of the horizon area generally receives a rescaling upon insisting
that the AdS metric take its canonical, Poincaré-invariant form. In other words, if one
defines the normalization of the boundary coordinates by using the AdS asymptotics, one
must rescale the coordinates globally, and hence the area of the horizon will be rescaled by
some constant.

Consider the zero temperature interpolating metric, which we write as

ds2 = −U0(r)dt2 +
dr2

U0(r)
+ V0(r)dxi · dxi (A.1)

For an extremal black hole with Lifshitz scaling,

r → r

λ
, t → λt , xi → λ

1
z xi (A.2)

the IR behavior of the metric is determined by this scale invariance up to a constant:

ds2 = −r
2

l2
dt2 +

l2

r2
dr2 + ξ

(r
l

)2/z
dxi · dxi , (A.3)

where ξ is a constant. The solution is not Poincaré invariant. As noted earlier, this
interpolating solution was numerically constructed in [26] for the D = 4 extremal solution,
where the authors solved the linearized perturbation equations. The metric goes as

U0(r) =

{
(r/l)2 r → 0
(r/L)2 r →∞

(A.4)

12This work was done with Per Kraus.
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and

V0(r) =

{
ξ (r/l)2/z r → 0
(r/L)2 r →∞

(A.5)

where l and L are the characteristic length scales of the Lifshitz and AdS geometries,
respectively. ξ is not fixed by any symmetry.

In thinking about the finite temperature solutions, one can view them as being “glued
in” to the zero temperature background, which is to say that the near-extremal black holes
have extremal asymptotics:

ds2 = −r
2

l2
f(r)dt2 +

l2

r2

dr2

f(r)
+ ξ

(r
l

)2/z
dxi · dxi , (A.6)

where f(r) = 1−
(
rh
r

)ω
and ω = 1 + D−2

z . In the context of an interpolating solution, this
is only strictly true in the infinitesimal temperature limit: as one raises the temperature,
the horizon extends outward toward the IR extremal asymptotic region so that in the full
global solution, the UV asymptotics will change. The D-dimensional Lifshitz black holes
we are considering in this paper are supported by a scalar field and a U(1) gauge field;
their entropy densities, as determined by scaling symmetry, will have the form

ŝ = cf(φ̂0)T̂
D−2
z (A.7)

where hats denote dimensionless quantities, made with appropriate powers of, in our case,
the charge density. What we wish to show numerically, as a consequence of the above,
is that as one lowers the dimensionless temperature T̂ of the black hole while keeping
the dimensionless source φ̂0 fixed, the combination cf(φ̂0) asymptotes to a fixed value,
determined by the value of φ̂0 and ξ:

T̂ → 0, φ̂0 fixed ⇒ ŝ

T̂
D−2
z

→ Constant (A.8)

We form dimensionless parameters with the asymptotic charge density ρ, defined by
the usual AdS asymptotics as

A′t(r) =
ρ

rD−2
+ . . . (A.9)

Then for a massless scalar in bulk spacetime dimension D, and hence with asymptotic falloff

φ(r) ∼ φ0 +
φ1

rD−1
, (A.10)

we have
ŝ =

s

ρ
, T̂ =

T

ρ
1

D−2

, φ̂0 = φ0 (A.11)

Let us choose the parameters

D = 4 , α = 1 , V0 = 6 (A.12)

This choice of α gives z = 5, so that ŝ ∼ T̂ 2/5.
We choose to fix the source at φ̂0 = 1±10−4, integrating out to large r such that U(r) ∼

V (r) ∼ rx, where x = 2± 10−5. Figure 2 below shows that, indeed, the behavior (A.8) is
satisfied down to temperature T̂ ∼ 10−5; further probes of lower temperatures allowed by
numerical stability do not deviate from this behavior.
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Figure 2. Low-temperature power law scaling of entropy density with temperature, including the
coefficient. The entropy density displays true Lifshitz power law behavior as the IR asymptotics
approach those of the zero temperature case. All quantities are dimensionless.
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