115 research outputs found

    Cost of Performance or Difference in Value

    Get PDF

    Cost of Performance or Difference in Value

    Get PDF

    Protection from lethal septic peritonitis by neutralizing the biological function of interleukin 27

    Get PDF
    The immune response to bacterial infections must be tightly controlled to guarantee pathogen elimination while preventing tissue damage by uncontrolled inflammation. Here, we demonstrate a key role of interleukin (IL)-27 in regulating this critical balance. IL-27 was rapidly induced during murine experimental peritonitis induced by cecal ligation and puncture (CLP). Furthermore, mice deficient for the EBI3 subunit of IL-27 were resistant to CLP-induced septic peritonitis as compared with wild-type controls, and this effect could be suppressed by injection of recombinant single-chain IL-27. EBI3−/− mice displayed significantly enhanced neutrophil migration and oxidative burst capacity during CLP, resulting in enhanced bacterial clearance and local control of infection. Subsequent studies demonstrated that IL-27 directly suppresses endotoxin-induced production of reactive oxygen intermediates by isolated primary granulocytes and macrophages. Finally, in vivo blockade of IL-27 function using a newly designed soluble IL-27 receptor fusion protein led to significantly increased survival after CLP as compared with control-treated mice. Collectively, these data identify IL-27 as a key negative regulator of innate immune cell function in septic peritonitis. Furthermore, in vivo blockade of IL-27 is a novel potential therapeutic target for treatment of sepsis

    Identification and functional characterisation of CRK12:CYC9, a novel cyclin-dependent kinase (CDK)-cyclin complex in Trypanosoma brucei

    Get PDF
    The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively

    Geographical and environmental approaches to urban malaria in Antananarivo (Madagascar)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies, conducted in the urban of Antananarivo, showed low rate of confirmed malaria cases. We used a geographical and environmental approach to investigate the contribution of environmental factors to urban malaria in Antananarivo.</p> <p>Methods</p> <p>Remote sensing data were used to locate rice fields, which were considered to be the principal mosquito breeding sites. We carried out supervised classification by the maximum likelihood method. Entomological study allowed vector species determination from collected larval and adult mosquitoes. Mosquito infectivity was studied, to assess the risk of transmission, and the type of mosquito breeding site was determined. Epidemiological data were collected from November 2006 to December 2007, from public health centres, to determine malaria incidence. Polymerase chain reaction was carried out on dried blood spots from patients, to detect cases of malaria. Rapid diagnostic tests were used to confirm malaria cases among febrile school children in a school survey.</p> <p>A geographical information system was constructed for data integration. Altitude, temperature, rainfall, population density and rice field surface area were analysed and the effects of these factors on the occurrence of confirmed malaria cases were studied.</p> <p>Results</p> <p>Polymerase chain reaction confirmed malaria in 5.1% of the presumed cases. Entomological studies showed <it>An. arabiensis </it>as potential vector. Rice fields remained to be the principal breeding sites. Travel report was considered as related to the occurrence of <it>P. falciparum </it>malaria cases.</p> <p>Conclusion</p> <p>Geographical and environmental factors did not show direct relationship with malaria incidence but they seem ensuring suitability of vector development. Absence of relationship may be due to a lack of statistical power. Despite the presence of <it>An. arabiensis</it>, scarce parasitic reservoir and rapid access to health care do not constitute optimal conditions to a threatening malaria transmission. However, imported malaria case is suggestive to sustain the pocket transmission in Antananarivo.</p

    Numerical simulation of heat transfer in a large room with a working gas infrared emitter

    Get PDF
    The article presents a new approach to determining the main characteristics of the thermal regime in the buildings and structures heated by the gas infrared emitters, based on the analysis of convective heat transfer in the air and thermal conductivity in the enclosing structures. The authors have considered a mathematical model of turbulent heat transfer in the framework of the standard k-e model under radiant heating conditions. The simulation was carried out for a large room with an approximation to the real operating conditions of an industrial facility. The options for heating an empty room and the room with an object were considered

    Identification of ORC1/CDC6-Interacting Factors in Trypanosoma brucei Reveals Critical Features of Origin Recognition Complex Architecture

    Get PDF
    DNA Replication initiates by formation of a pre-replication complex on sequences termed origins. In eukaryotes, the pre-replication complex is composed of the Origin Recognition Complex (ORC), Cdc6 and the MCM replicative helicase in conjunction with Cdt1. Eukaryotic ORC is considered to be composed of six subunits, named Orc1–6, and monomeric Cdc6 is closely related in sequence to Orc1. However, ORC has been little explored in protists, and only a single ORC protein, related to both Orc1 and Cdc6, has been shown to act in DNA replication in Trypanosoma brucei. Here we identify three highly diverged putative T. brucei ORC components that interact with ORC1/CDC6 and contribute to cell division. Two of these factors are so diverged that we cannot determine if they are eukaryotic ORC subunit orthologues, or are parasite-specific replication factors. The other we show to be a highly diverged Orc4 orthologue, demonstrating that this is one of the most widely conserved ORC subunits in protists and revealing it to be a key element of eukaryotic ORC architecture. Additionally, we have examined interactions amongst the T. brucei MCM subunits and show that this has the conventional eukaryotic heterohexameric structure, suggesting that divergence in the T. brucei replication machinery is limited to the earliest steps in origin licensing

    Altering Mucus Rheology to “Solidify” Human Mucus at the Nanoscale

    Get PDF
    The ability of mucus to function as a protective barrier at mucosal surfaces rests on its viscous and elastic properties, which are not well understood at length scales relevant to pathogens and ultrafine environmental particles. Here we report that fresh, undiluted human cervicovaginal mucus (CVM) transitions from an impermeable elastic barrier to non-adhesive objects sized 1 µm and larger to a highly permeable viscoelastic liquid to non-adhesive objects smaller than 500 nm in diameter. Addition of a nonionic detergent, present in vaginal gels, lubricants and condoms, caused CVM to behave as an impermeable elastic barrier to 200 and 500 nm particles, suggesting that the dissociation of hydrophobically-bundled mucin fibers created a finer elastic mucin mesh. Surprisingly, the macroscopic viscoelasticity, which is critical to proper mucus function, was unchanged. These findings provide important insight into the nanoscale structural and barrier properties of mucus, and how the penetration of foreign particles across mucus might be inhibited

    Sheldon Spectrum and the Plankton Paradox: Two Sides of the Same Coin : A trait-based plankton size-spectrum model

    Get PDF
    The Sheldon spectrum describes a remarkable regularity in aquatic ecosystems: the biomass density as a function of logarithmic body mass is approximately constant over many orders of magnitude. While size-spectrum models have explained this phenomenon for assemblages of multicellular organisms, this paper introduces a species-resolved size-spectrum model to explain the phenomenon in unicellular plankton. A Sheldon spectrum spanning the cell-size range of unicellular plankton necessarily consists of a large number of coexisting species covering a wide range of characteristic sizes. The coexistence of many phytoplankton species feeding on a small number of resources is known as the Paradox of the Plankton. Our model resolves the paradox by showing that coexistence is facilitated by the allometric scaling of four physiological rates. Two of the allometries have empirical support, the remaining two emerge from predator-prey interactions exactly when the abundances follow a Sheldon spectrum. Our plankton model is a scale-invariant trait-based size-spectrum model: it describes the abundance of phyto- and zooplankton cells as a function of both size and species trait (the maximal size before cell division). It incorporates growth due to resource consumption and predation on smaller cells, death due to predation, and a flexible cell division process. We give analytic solutions at steady state for both the within-species size distributions and the relative abundances across species

    Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness

    Get PDF
    Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases
    corecore