26 research outputs found

    Regulation of the methanogenesis pathways by hydrogen at transcriptomic level in time

    Get PDF
    The biomethane formation from 4 H-2 + CO2 by pure cultures of two methanogens, Methanocaldococcus fervens and Methanobacterium thermophilum, has been studied. The goal of the study was to understand the regulation of the enzymatic steps associated with biomethane biosynthesis by H-2, using metagenomic, pan-genomic, and transcriptomic approaches. Methanogenesis in the autotrophic methanogen M. fervens could be easily "switched off" and "switched on" by H-2/CO2 within about an hour. In contrast, the heterotrophic methanogen M. thermophilum was practically insensitive to the addition of the H-2/CO2 trigger although this methanogen also converted H-2/CO2 to CH4. From practical points of view, the regulatory function of H-2/CO2 suggests that in the power-to-gas (P2G) renewable excess electricity conversion and storage systems, the composition of the biomethane-generating methanogenic community is essential for sustainable operation. In addition to managing the specific hydrogenotrophic methanogenesis biochemistry, H-2/CO2 affected several, apparently unrelated, metabolic pathways. The redox-regulated overall biochemistry and symbiotic relationships in the methanogenic communities should be explored in order to make the P2G technology more efficient

    Perturbation of the mucosa-associated anaerobic gut microbiota in streptozotocin-induced diabetic rats

    Get PDF
    Our aim was to map the gut region-specific differences of the mucosa-associated microbiome distribution in a streptozotocin-induced diabetic rat model. Tissue samples from the duodenum, ileum and colon were collected 10 weeks after the onset of hyperglycaemia to analyse the mucosa-associated microbiota using next-generation DNA sequencing. Striking differences were observed in the mucosa-associated microbiota of the duodenum between diabetic and control rats. A significant invasion of the aerobic genus Mycoplasma was apparent in diabetes, and the abundance of the anaerobic phylum Firmicutes decreased massively. It is noteworthy that insulin treatment eliminated the Mycoplasma invasion in the duodenum and apparently restored the anaerobic environment in the mucosa. In the ileum the abundance of the phylum Firmicutes increased in the diabetic samples. Although the proportion of the phylum Proteobacteria decreased moderately, its composition changed significantly, and insulin treatment induced only minor alterations. In the diabetic samples of colon, the abundance of the phylum Firmicutes decreased slightly, the relative number of the bacteria in the phylum Bacteroidetes increased strongly as compared to the control values, and after insulin treatment this increase was more significant. Chronic hyperglycaemia has the most prominent effect on the mucosa-associated microbiota in the duodenum

    Regulation of the methanogenesis pathways by hydrogen at transcriptomic level in time

    Get PDF
    The biomethane formation from 4 H-2 + CO2 by pure cultures of two methanogens, Methanocaldococcus fervens and Methanobacterium thermophilum, has been studied. The goal of the study was to understand the regulation of the enzymatic steps associated with biomethane biosynthesis by H-2, using metagenomic, pan-genomic, and transcriptomic approaches. Methanogenesis in the autotrophic methanogen M. fervens could be easily "switched off" and "switched on" by H-2/CO2 within about an hour. In contrast, the heterotrophic methanogen M. thermophilum was practically insensitive to the addition of the H-2/CO2 trigger although this methanogen also converted H-2/CO2 to CH4. From practical points of view, the regulatory function of H-2/CO2 suggests that in the power-to-gas (P2G) renewable excess electricity conversion and storage systems, the composition of the biomethane-generating methanogenic community is essential for sustainable operation. In addition to managing the specific hydrogenotrophic methanogenesis biochemistry, H-2/CO2 affected several, apparently unrelated, metabolic pathways. The redox-regulated overall biochemistry and symbiotic relationships in the methanogenic communities should be explored in order to make the P2G technology more efficient

    Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance

    Get PDF
    Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system

    The Planktonic Core Microbiome and Core Functions in the Cattle Rumen by Next Generation Sequencing

    Get PDF
    The cow rumen harbors a great variety of diverse microbes, which form a complex, organized community. Understanding the behavior of this multifarious network is crucial in improving ruminant nutrient use efficiency. The aim of this study was to expand our knowledge by examining 10 Holstein dairy cow rumen fluid fraction whole metagenome and transcriptome datasets. DNA and mRNA sequence data, generated by Ion Torrent, was subjected to quality control and filtering before analysis for core elements. The taxonomic core microbiome consisted of 48 genera belonging to Bacteria (47) and Archaea (1). The genus Prevotella predominated the planktonic core community. Core functional groups were identified using co-occurrence analysis and resulted in 587 genes, from which 62 could be assigned to metabolic functions. Although this was a minimal functional core, it revealed key enzymes participating in various metabolic processes. A diverse and rich collection of enzymes involved in carbohydrate metabolism and other functions were identified. Transcripts coding for enzymes active in methanogenesis made up 1% of the core functions. The genera associated with the core enzyme functions were also identified. Linking genera to functions showed that the main metabolic pathways are primarily provided by Bacteria and several genera may serve as a “back-up” team for the central functions. The key actors in most essential metabolic routes belong to the genus Prevotella. Confirming earlier studies, the genus Methanobrevibacter carries out the overwhelming majority of rumen methanogenesis and therefore methane emission mitigation seems conceivable via targeting the hydrogenotrophic methanogenesis

    Hypersensitivity to Thromboxane Receptor Mediated Cerebral Vasomotion and CBF Oscillations during Acute NO-Deficiency in Rats

    Get PDF
    ), NO-deficiency is often associated with activation of thromboxane receptors (TP). In the present study we hypothesized that in the absence of NO, overactivation of the TP-receptor mediated cerebrovascular signaling pathway contributes to the development of vasomotion and CBF oscillations. synthesis by ozagrel (10 mg/kg iv.) attenuated it. In isolated MCAs U-46619 in a concentration of 100 nM, which induced weak and stable contraction under physiological conditions, evoked sustained vasomotion in the absence of NO, which effect could be completely reversed by inhibition of Rho-kinase by 10 µM Y-27632.These results suggest that hypersensitivity of the TP-receptor – Rho-kinase signaling pathway contributes to the development of low frequency cerebral vasomotion which may propagate to vasospasm in pathophysiological states associated with NO-deficiency

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Diagnosis, medical and surgical treatment approaches of equine urolithiasis 2. - Case reports

    No full text
    SUMMARY In the second part of series of articles the authors present the clinical course of six equine urolithiasis cases. The horses were referred to the Equine Department and Clinic of the Veterinary Faculty of Szent Istvan University from 2007 to 2014 with pollakiuria, stranguria, haematuria or colic signs. Uroliths were detected via transrectal or percutaneous ultrasound, and following surgical removal, the stones were analysed for chemical composition. In each cases, uroliths predominantly consisted of calcium carbonate. In four cases, solitary large urolith was removed from the urinary bladder via ventral midline celiotomy and cystotomy under general anaesthesia. In the fi fth case standing perineal urethrotomy was carried out. The sixth horse showed recurrent acute colic and was subjected to midline laparotomy. Intraoperative fi nding revealed marked hydronephrosis of the left kidney and the horse was subsequently euthanised due to poor prognosis. Recurrence occurred in one case and a second cystotomy was performed. The authors’ intention is to share their experience through this case series and to provide insight into the commonly encountered clinical scenarios while managing equine urolithiasis
    corecore