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Abstract

Annually, agricultural activity produces an enormous amount of plant biomass by-product.

Many studies have reported the biomethane potential of agro-industrial wastes, but only a

few studies have investigated applying the substrates in both batch and continuous mode.

Tomato is one of the most popular vegetables globally; its processing releases a substantial

amount of by-product, such as stems and leaves. This study examined the BMP of tomato

plant (Solanum lycopersicum Mill. L. cv. Alfred) waste. A comparative test revealed that the

BMPs of corn stover, tomato waste,and their combination were approximately the same,

around 280 mL methane/g Volatile Solid. In contrast, the relative biogas production

decreased in the presence of tomato waste in a continuous mesophilic anaerobic digestion

system; the daily biogas productions were 860 ± 80, 290 ± 50, and 570 ± 70 mL biogas/gVo-

latile Solid/day in the case of corn stover, tomato waste, and their mixture, respectively. The

methane content of biogas was around 46–48%. The fermentation parameters of the contin-

uous AD experiments were optimal in all cases; thus, TW might have an inhibitory effect on

the microbial community. Tomato plant materials contain e.g. flavonoids, glycoalkaloids

(such as tomatine and tomatidine), etc. known as antimicrobial and antifungal agents. The

negative effect of tomatine on the biogas yield was confirmed in batch fermentation experi-

ments. Metagenomic analysis revealed that the tomato plant waste caused significant rear-

rangements in the microbial communities in the continuously operated reactors. The results

demonstrated that tomato waste could be a good mono-substrate in batch fermentations or

a co-substrate with corn stover in a proper ratio in continuous anaerobic fermentations for

biogas production. These results also point to the importance of running long-term continu-

ous fermentations to test the suitability of a novel biomass substrate for industrial biogas

production.
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Introduction

There is a growing interest in renewable energy sources due to the depletion of fossil fuels and

their negative effects on the environment. One of the most common non-conventional energy

carriers is biogas produced in anaerobic digestion (AD) processes. A wide variety of biomasses,

such as maize or grass silage, crop plant and agricultural by-product, wastewater sludge, food

processing by-products, domestic organic waste, and manure, have been used as substrates in

biogas plants [1–3]. The stability and productivity of the biogas plants could be affected by

diverse substrates. Moreover, the microbial community composition fluctuates and varies with

the substrates [1].

AD has an increasing role in the agricultural sector for the energetic utilization of organic

wastes [4]. Approximately 5 billion hectares are used for agricultural production worldwide

[5], generating large volumes of plant biomass by-products, such as orange, onion, and potato

peels, green plant residues, and tomato pomace [6].

Many studies have reported that various kinds of agricultural by-product, e.g., cabbage,

capsicum, pepper, cucumber, eggplant, and tomato residue, are suitable for biogas production

[4, 7, 8].

A lignocellulosic biomass’ energy potential depends on its composition, such as the lignin,

hemicellulose, and cellulose ratio, and the microbial community formed or designed to con-

vert these fibers to energy carrier. However, various plant species might produce antimicrobial

agents that negatively affect the microbial activities during e.g. AD [9–11]. Moreover, the

methane yield can be influenced by parameters, such as temperature, pH, volatile fatty acids

(VFAs), ammonia, macro- and micronutrients, and potentially toxic compounds. The toxic or

inhibitory compounds could modify microorganisms’ activity [2, 12].

Therefore, it will be useful to investigate the optimal mix of substrates and the conditions of

fermentation. While the biomethane potential (BMP) of many wastes in batch fermentation

experiments have been tested, there are just a few studies comparing the batch fermentation to

continuous fermentation [4, 7]. Batch fermentations are suitable in estimating a substrate’s

methane yield and biodegradability, but they do not provide information about the long-term

effect of the substrate on the fermentation.

Several standard methods, such as DIN 38414 TL8, ASTM D 5210, ISO 11734, ISO 14853,

ISO 15985, and VDI 4630, are used to evaluate BMP [13]. These standards prescribe the condi-

tions of fermentation, including the amount of inoculum, substrates, and medium, the defini-

tion of the necessary controls, blanks, and replicates, and the specification of the experimental

setup [13]. In continuous AD system, the daily feeding of reactors, the removal of fermentation

liquid, the harvest of biogas, and the monitoring of the fermentation parameters are carried

out periodically over the long term. In this experimental setup, the durable effect of the applied

substrate could be examined [14].

Also, the rapid expansion of “omics” approaches has enabled a better understanding of the

AD process. Analyzing the structure, composition, and activity of the involved microbial com-

munities and combining the metagenomics and culture-dependent methods are necessary to

gain a deeper insight into the fermentation processes, identify the key factors involved in the

optimization of the AD process parameters and enhancement of the biogas yield from a more

diversified group of plant biomass waste substrates [15, 16].

Tomato (Solanum lycopersicum) is one of the most widely cultivated vegetable crops glob-

ally [7]. During its traditional or greenhouse cultivation, harvesting, and industrial processing,

most of a tomato plant remains unused, producing a large quantity of waste consisting of

peels, seeds, stems, and leaves that reached 473,989 tons in 2017 [17]. Greenhouse cultivation

alone produces 15 tons/ha/year of tomato plant waste [18]. Tomato stems and leaves contain
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various bioactive substances, such as phenols, flavonoids, and glycoalkaloids, such as tomatine

and tomatidine, which have possible antimicrobial, antiviral, and antifungal effects [9]. Tradi-

tionally, these by-products are returned to the global cycles of goods by composting or burning

[19, 20] or discarded to landfill.

Managing these by-products has become a global environmental and economic issue. How-

ever, tomato waste is also one of the most underutilized sources of renewable energy [21].

Nowadays, most studies focus on utilizing tomato crops, seeds, and peels for biogas production

or carotenoid extraction. Many studies investigated the utilization of various kinds of tomato

waste, such as those from groceries, processing plants, tomato sauce, and tomato puree [22–

26]. There are only few reports on the bioenergetic utilization of stems and leaves from tomato

wastes [7, 26–29]. A previous study evaluated the BMP potential of two different tomato plant

residue, mostly stems and leaves; however, the stems and leaves’ effects on continuous fermen-

tation were not investigated [8].

This study compares the BMPs of tomato stems and leaves–potentially useful substrates–in

batch and continuous AD. We applied tomato waste as mono- and co-substrate in both types of

fermentation and followed the process parameters with standard analytical techniques. The

metagenomic approach was used to monitor the variations in the microbial communities caused

by the substrates. This study is the first attempt to carry out a complex investigation of tomato

waste (stems and leaves), as a mono- or co-substrate, in batch and continuous AD systems.

Materials and methods

Substrate specification

Tomato (S. lycopersicum Mill. L. cv. Alfred) plant waste (TW) was obtained from the Depart-

ment of Plant Biology at University of Szeged. Dry corn stover (CS), provided by the Faculty of

Agriculture, University of Szeged, was used as the positive control in both batch and continu-

ous AD experiments.

Both, tomato stems and leaves and corn stover came from field experiments and were

recovered after the harvest. The air-dried plant materials were milled and sieved with an elec-

tric grinder (Retsch SM 100, Haan, Germany). The maximum particle size was 2 mm. In the

co-fermentation experiments, CS and TW were combined at a 7:3 ratio (CoS) based on volatile

solid and C/N measurements.

Total solid, volatile solid, and C/N ratio measurements

To determine the dry matter content (total solid, TS), the plant materials were kept at 105˚C

until their weight became constant. The volatile solid (VS) content was determined by placing

the dried residues in an incinerator at 550˚C for 2 hours. An Elementar Vario MAX CN (Ele-

mentar Group, Hanau, Germany) analyzer was used to determine the C/N ratio of the sub-

strates. The temperature of the combustion and post combustion tube was set to 900˚C, the

temperature of the reduction tube was set to 830˚C. After the samples were burnt in the com-

bustion tube the water vapour was separated by a specific adsorption column containing Sica-

pent (Merck KGaA, Darmstadt, Germany). The components were detected with a thermal

conductivity detector. Helium (5.0) was the carrier and flushing gas (Messer Group, Bad

Soden, Germany).

Fiber analysis

FIWE 3 Fiber Analyzer (VELP Scientifica, Usmate, Italy) was used to determine the fiber com-

position of the applied substrates [30].
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Inoculum

The AD inoculum was collected freshly from a biogas plant (Zöldforrás Ltd., Szeged, Hun-

gary), which operated with a mixture of pig slurry and maize silage under mesophilic condi-

tions. Prior to utilization, the sludge was filtered through a 2 mm filter to remove particles

larger than 2 mm and undigested plant materials.

Batch fermentation

The biomethane potential (BMP) tests of the CS (positive control), TW, and CoS were per-

formed in batch fermentation in 125 mL Wheaton glass serum bottles (Merck KGaA, Darm-

stadt, Germany). Based on the VS contents, the substrate to the inoculum ratio was set to 2:1

(VDI I.) and 1:1 (VDI II.). Blank samples containing only water and inoculum were prepared

to measure the background methane formation. The bottles were sealed with rubber septa and

the airspaces were flushed with nitrogen gas (Purity: 5.0, Messer group, Bad Soden, Germany)

for 10 minutes. These experiments were performed in triplicates following the VDI 4630 stan-

dard. The fermentations were carried out under mesophilic condition (37.0˚C ± 0.5˚C) in the

final volume of 40 mL. The reactor’s initial pH was 7.5 ± 0.15. Methane content in the head-

space of the bottles was measured daily for 30 days. 100μl samples were taken with a Gastight

Hamilton syringe and analyzed by gas chromatography (GC) (Section Gas chromatography

analysis). Each sample was stirred manually before gas analysis. All fermentations were per-

formed in triplicates.

Continuous fermentation

Both tomato waste as a mono-substrate (TW) and co-substrate (CoS) were also tested in con-

tinuous fermentation. The fermentations were carried out in 5 L, continuously stirred tank

reactors (CSTRs) [31]. The reactors were filled with the inoculum and then operated under a

mesophilic (37˚C) condition until the residual biogas production dropped to zero. We subse-

quently started to feed the reactors daily (OLR: 1 g VS/L; particle size: <2mm). The volume

and methane content of the biogas were measured every day; the various fermentation param-

eters, such as pH, electroconductivity, Volatile Organic Acid/Total Inorganic Carbon (VOA/

TIC), ammonium-ion cc., were recorded weekly. The volume of the produced biogas was

determined by Brooks gas flow meters (5860S/BA1KA0BA0BA1B1, Brooks Instrument, Hat-

field, USA) directly connected with the reactors. The methane content of the generated biogas

was measured (Section Gas chromatography analysis).

Gas chromatography analysis

The CH4 content was measured daily by an Agilent 6890N gas chromatograph (Agilent Tech-

nologies, Santa Clara, United States). The GC was equipped with a HP Molesive 5 Å column

(length 30 m, I.D. 0.53 mega bore, film 25 μm) and a thermal conductivity detector. The flow-

rate of Argon 5.0 (Linde Group Hungary, Budapest, Hungary) carrier gas was set to 16.8 mL/

min. Split injection mode was applied at 0.2:1 and 150˚C. During batch fermentation, the

headspaces of the bottles were flushed with nitrogen gas (Messer Group, Bad Soden, Germany)

for 10 minutes after each sampling and measurement in the case of batch fermentation. In

continuous AD systems, gas samples were taken from the reactor’s headspace in every day into

a 15 mL gas tight serum bottle and the methane measurements were carried out as we

described above. The methane calibration was performed with certified gas mixture ((5% CO2;

5% CH4; 5% H2; 85% N2) Linde plc., Dublin, Ireland)). For the sampling and injection, Hamil-

ton sample lock syringe was used (Merck KGaA, Darmstadt, Germany).
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Fermentation parameters

The pH of the samples was measured with a Radelkis OP-211/2 digital pH meter (RADELKIS

Kft, Budapest, Hungary). The volatile organic acid and total acid capacity (VOA/TIC) of the

samples were determined using a Pronova FOS/TAC 2000 instrument.

High throughput DNA sequencing

A 150 mg sample from each reactor was collected for total community gDNA purification at

the start of fermentation (inoculum) and on the 40th day to determine the digester’s microbial

compositions. The samples were stored at −20˚C for later use. The extractions were performed

with a Quick-DNA Fecal/Soil Microbe Kit (Zymo Research Corporation, Irvine, USA). The

DNA was first quantified with a Qubit 4.0 fluorimeter (Invitrogen, Waltham, USA), and then,

its integrity was examined on 1% agarose gel.

The 16S Metagenomic Sequencing Libraries were prepared according to the Illumina’s pro-

tocol. The V3-V4 region of 16S rDNA was amplified by PCR (Illumina, San Diego, USA), with

the Illumina_16S_341F and Illumina_16S_805R primer pair [32]. A 25-μL PCR reaction mix-

ture contained 12.5 ng of genomic DNA, 2x KAPA HiFi HotStart Ready Mix, and 0.2 μM of

each primer. The PCR’s parameters include initialization at 95˚C for 3 min, and 25 cycles of

denaturation, annealing, and extension at 95˚C, 65˚C and 72˚C (each for 30 sec), and final

elongation at 72˚C for 5 minutes. The PCR products were purified, analyzed, indexed, then

the libraries were validated and sequenced (Illumina MiSeq platform, MiSeq1 Reagent Kit v3

(600 cycles), by Seqomics Ltd., Mórahalom, Hungary). The sequencing data is available on the

NCBI Sequence Read Archive (Submission number: SAMN13231577).

Bioinformatics methods for metagenomic analysis

The trimming and quality filtering of the sequencing reads was carried out using the DADA2’s
[33] filterAndTrim function (parameters: truncLen = c(240,220), maxN = 0, maxEE = c(2,2),

truncQ = 2, rm.phix = T, ctrimLeft = c(50, 55)) in the R environment (R version 3.5.3, Great
Truth) [34]. The trimmed and quality-filtered reads were uploaded to the One Codex webser-

ver and classified by the Targeted Loci Database [35]. The phylum and genus-level results were

downloaded in CSV format and imported into the R package. The Principal Component Anal-

ysis was carried out with FactoMineR [36] and visualized with factoextra [37]. The phyloseq
package was used for richness estimation and visualization. The statistical tests were carried

out with the DESeq2 (test = "Wald", fitType = "parametric") [38, 39]. The differences were con-

sidered significant by adjusting a p-value threshold to 0.01. The results were visualized with

ggpubr [40].

Tomatine and tomatidine inhibition test in batch mode

The effects of tomatine and tomatidine were tested in batch experiments using α-cellulose as a

substrate. The fermentations were conducted according to the VDI 4630 standards (Sections

Inoculum, Batch fermentation and Continuous fermentation; https://www.vdi.de/en/home).

0.1, 1, 10, 100 μg tomatine or tomatidine were dissolved in DMSO and put into the reactors.

Positive and solvent controls were used as well. Positive control contained inoculum, water

and α-cellulose; the solvent control contained inoculum, water, α-cellulose and DMSO with-

out tomatine or tomatidine. The methane production was measured daily for 16 days, till the

methane formation dropped to zero.
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Phytotoxicity test

Lettuce is a good model plant for monitoring phytotoxic compounds [41]. The germination/

elongation tests of lettuce seeds (Lactuca sativa L.) were performed to estimate the fermenta-

tion effluents’ phytotoxicity. Germination inhibition and root elongation inhibition were con-

ducted on a thin layer of filter paper placed on a Petri dish (90 �× 20 mm). Each plate was

supplemented with 1, 3, or 5 v/v% fermentation sludge solution in distilled water; an identical

volume of distilled water acted as a control. 30 seeds were placed on each plate. The Petri

dishes were incubated at 25˚C with lids in the dark. The appearance of radicles indicated ger-

mination. Measurements were performed after 0, 1, 2 and 3 days of sludge treatments. The

number of germinated seeds and the length of the radicles were determined by ImageJ soft-

ware [42].

Statistical analysis

The data were analyzed by GraphPad Prism 8 Software, and Dunnett’s multiple comparison

test was applied in every case.

Results and discussion

Batch fermentation of corn stover, tomato waste, and co-substrate

The BMP of tomato stem and leave residues were determined in batch fermentation experi-

ments. The tomato wastes were used as mono-substrate (TW) and co-substrate (CoS) with CS.

Based on CS and TW’s VS-, carbon- and nitrogen contents, CS and TW were mixed into CoS

at a 0.7:0.3 ratio. Before fermentation, the VS, TS, carbon content, nitrogen content, C/N ratio,

and fiber composition of the substrates was determined (Tables 1 and 2).

The TS contents of TW, CS, and CoS are very similar, while the VS content of TW is 8%

lower than that of CS; however, the CS has a C/N ratio at least two times higher than those of

TWs (Table 1). The optimal C/N ratio for an AD process ranges from 20 to 30 [43, 44]. The

C/N ratios of CS, TW and CoS fall into the optimal C/N range. The main fiber components of

the CS, TW, and CoS, i.e., solubles, hemicellulose, cellulose, and lignin, were also determined

(Table 2); CS had a higher content of hemicellulose, cellulose, and lignin than TW.

Table 1. Different parameters of the used substrates.

TS (%) VS (%) C content (%) N content (%) C/N ratio particle size [mm]

Corn stover (CS) 92.80 ± 0.25 91.10 ± 0.32 44.02 ± 1.31 1.1 ± 0.03 39.88 ±0.08 <2

Tomato waste (TW) 92.12 ± .012 83.74 ± 0.05 37.27 ± 0.34 1.77 ± 0.05 21.09 + 0.77 <2

Co-substrate (CoS) 92.18 ± 0.13 88.05 ± 0.40 41.03 ± 0.94 1.46 ± 0.21 28.46 ± 3.29 <2

TS-Total Solid, VS- Volatile Solid, C content-carbon content, N content- nitrogen content, C/N ratio-carbon/nitrogen ratio

https://doi.org/10.1371/journal.pone.0248654.t001

Table 2. Fiber composition of the used substrates (%).

Solubles Hemicellulose Cellulose Lignin

TW 56.57 ± 1.2 9.9 ± 0.13 26.86 ± 1.82 6.69 ± 0.49

CS 28.2 ± 2.34 23.00 ± 1.44 32.12± 1.93 14.23 ± 1.71

CoS 36.57 ± 1.5 19.06 ± 0.71 30.46± 0.4 11.81 ± 0.99

TW-Tomato waste, CS-Corn stover, CoS-Co-substrate

https://doi.org/10.1371/journal.pone.0248654.t002
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On the other hand, TW’s soluble content was approximately two times higher than that of

CS. The lignin content is important to a substrate’s digestibility. A cross-linked, heterogeneous

biopolymer, lignin is hard to degrade; it prevents microorganisms and their enzymes from

accessing the cellulose and hemicellulose [45]. Therefore, TW’s lower lignin and higher soluble

content make it more accessible to microbial utilization.

The cumulative methane yields from CS, TW, and CoS (both VDI I. and VDI II. systems)

were statistically indistinguishable, they varied between 245±18 and 289±15 mL/gVS (Fig 1).

Tomato crop residue (stems, leaves, vines and residual fruit) was previously tested in batch

experiments by Li et al. where the biogas yield was 214.8 mL/gVS with 57.9% methane content

(124.4 mL methane/gVS [46], which was substantially lower than our yields.

The experiments suggest that both TW and CoS are promising substrates for AD.

We also noted that TW’s methane production rate was higher than CS in the first 5 days,

which might be attributed to TW’s higher soluble content and lower lignin concentration (S1 Fig).

Anaerobic digestions of TW, CS, and CoS in a continuous system

TW’s persistent effect on fermentation was tested in continuous AD experiments using mono-

(TW) and co-substrate (CoS). In these experiments, CS was also used as a positive control.

First, the CSTR were fed with CS, TW, and CoS for three weeks to adapt their microbiota to

the substrates. After the adaptation phase, the biogas production and methane contents were

measured daily for 56 days.

The daily biogas yields of the continuous AD were 860 ± 80, 290 ± 50, and 570 ± 70mL/

(gVS � d) with CS (CSTRCS), TW (CSTRTW), and CoS (CSTRCoS), respectively (Fig 2); the

methane concentrations were comparable at 46.01 ± 3.56 (CSTRCS), 46.91 ± 3.77 (CSTRTW),

and 48.10 ± 3.96% (CSTRCoS). The volume of the daily produced biogas drastically dropped in

the presence of TW, by 66.28%, in the case of TW/CS and by 33.72% in the case of CoS/CS.

Throughout the CSTR experiments, the fermentation parameters, i.e., pH, VOA/TIC, conduc-

tivity and NH4
+ concentrations, remained within the optimal ranges. The pH varied between

7.20 and 7.92. The VOA/TIC value was between 0.1–0.3, and the NH4
+ concentrations were

less than 1.2 g/L.

Fig 1. The cumulative biogas yield of the batch experiments. The substrates used were corn stover (CS), tomato

waste (TW), and co-substrate (CoS, a mixture of CS and TW) with simple (VDI I.) and double (VDI II.) substrate

loads. There are no significant differences between the cumulative biogas yield of substrates according to the Dunnett’s

multiple comparison test (n = 3, p� 0.05).

https://doi.org/10.1371/journal.pone.0248654.g001
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The CSTR results diverge from our batch fermentation experiments and a previous study

on BMP [8]. Since both approaches had the other fermentation parameters in the optimal

range, their difference might be due to the presence of TW component that reduced biogas

production in the CSTR system. A similar phenomenon was also observed by Li and colleagues

in solid state, hemi-solid state and liquid AD systems using tomato residues (stalks, leaves and

other wastes) [47]. According to their conclusions, the higher loading of tomato residues

might cause stress leading to lower methane production. However, TW, including stems and

leaves, contains antimicrobial compounds, such as flavonoids, phenols, vitamins, tomatine,

and tomatidine [9–11]. The continuous input of these substances might influence the compo-

sition of the AD microbiota. Therefore, we carried out a 16S metagenomic analysis of CSTRs

(Section Microbial composition in the continuous fermenters) and tested the effect of toma-

tine and tomatidine in batch fermentation experiments (Section Tomatine and tomatidine

toxicity).

Microbial composition in the continuous fermenters

Bacterial community. The microbial communities in continuous fermentation were ana-

lyzed on day 0 (inoculum) and 40 of the experiment by 16S amplicon metagenomic analyses.

The statistics of the crude and processed sequencing reads are shown in Table 3.

The Shannon and Simpson indices were calculated to characterize and compare the micro-

bial diversities (alpha diversity) in the various fermentations (S2 Fig). CSTRTW’s Shannon and

Simpson indices were much lower than those of CSTRCS and CSTRCoS, suggesting that the

microbial communities in CSTRCS or CSTRCoS fermentations exhibited substantially higher

diversities than CSTRTW. Also, CSTRCoS’ diversity indices were more elevated than CSTRTW’s,

indicating an increased in diversity when CSTRs were fed with both substrates. In addition,

these results are consistent with the finding that TW contains antimicrobial compounds

[9, 11].

To further explore TW’s effect on the microbial compositions, the bacterial and archaeal

communities were analyzed with Principal Component Analysis (PCA) (Fig 3). The two axes

explained 60% of the total variance; the first axis explained 38.2%, and the second axis 21.8%.

Fig 2. The daily biogas production of continuous experiments. The substrates used were corn stover (CS), tomato waste (TW), and

co-substrate (CoS, a mixture of CS and TW). According to the statistical analysis, there was a significant difference between the CS and

TW, as well as CS and CoS. n = 56, p� 0.0001 (Dunnett’s multiple comparison test).

https://doi.org/10.1371/journal.pone.0248654.g002
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The CSTRs fed with TW, CS, and CoS formed diverse and discrete clusters. The parallel exper-

iments were grouped together. As expected, the CoS samples were closer to the control (CS)

than to the TW samples. The PCA results confirmed the influence of TW on the microbial

community composition in AD.

First, the abundances of the bacterial and archaeal domains present in the various fermenta-

tions were compared to each other on the 40th day. The microbial community of the inoculum

was also investigated and presented as a reference. The bacterial domain predominated in all

three continuous digestions, reaching 94.54% in abundance in CSTRTW, 94.97% in CSTRCS,

Fig 3. The Principal Component Analysis of CSTRs fed with CS (corn stover), TW (tomato waste), or CoS (co-

substrate) at the genus level. The bigger, colored circles showed the average of technical parallels (1,2,3).

https://doi.org/10.1371/journal.pone.0248654.g003

Table 3. Statistic of the used reads.

readcounts

Samples input filtered denoisedF denoisedR merged nonchim

CS/1 56791 47856 46381 46654 18289 17022

CS/2 52597 44319 40952 41460 18218 16084

CS/3 52019 42515 39183 39811 17191 15185

TW/1 54535 46605 45735 45980 21142 20136

TW/2 56333 48137 47184 47455 22385 21365

TW/3 50528 42531 41733 41961 19706 18785

CoS/1 57528 48167 46768 47023 26622 23788

CoS/2 63492 51770 50298 50674 29101 26267

CoS/3 60378 51086 49718 50006 28762 26017

CS, TW and CoS-fermentors fed with corn stover, tomato waste and co-substrate, respectively. 1,2,3 are the technical paralell samples

https://doi.org/10.1371/journal.pone.0248654.t003
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and 95.72% in CSTRCoS. The archaeal domain followed with 5.46% in CSTRTW, 5.03% in

CSTRCS, and 4.28% in CSTRCoS.

The most abundant bacterial phyla were Firmicutes, Bacteroidetes, Proteobacteria, Syner-

gistetes, Spirochaetes, Actinobacteria, Chloroflexi, and Fibrobacteres; the read count of each

phylum was higher than 0.7%. These phyla are found to be abundant in AD systems or biogas

plants [48]. Firmicutes and Bacteroidetes were the most consistently dominant phyla in all

samples. However, the relative read count of each sample was distinct. The Firmicutes

accounted for 52.7%, 61.3%, and 48.3% of total reads in the CSTRCS, CSTRTW, and CSTRCoS

fermentations, respectively. The second most abundant bacterial phylum, the Bacteroidetes

showed 26.7% (CSTRCS), 20.0% (CSTRTW) and 34.3% (CSTRCoS) appearance in the reactors.

The relative read counts of Synergistetes showed an increasing trend when fermenters were

fed with TW or CoS; the abundances of this phylum increased by 5.14 and 1.5 times in

CSTRTW (8.9%) and CSTRCoS (2.6%), relative to that of CSTRCS (1.7%), respectively. Since

several members of Synergistetes are known to ferment polypeptides and organic acids into

acetate, hydrogen and carbon-dioxide, as well as to form syntrophic metabolism with hydroge-

notrophic methanogens, an increase in their abundance in CSTRTW was presumably due to

the higher nitrogen content of TW (Table 1) [49, 50].

TW had the strongest effect on the microbial community composition in certain genera,

such as Clostridium (of phylum Firmicutes), Anaerocella (Bacteroidetes), Acetomicrobium
(Synergistetes), Herbinix (Firmicutes), and Gracilibacter (Firmicutes). The relative read counts

of these genera were 1.88 (Clostridium), 2.80 (Anaerocella), 14.00 (Acetomicrobium), 6.00 (Her-
binix), and 3.86 (Gracilibacter) times higher in the CSTRTW than in the CSTRCS fermentations

(Fig 4A). The members of the Clostridium genus participate in the steps of hydrolysis,

Fig 4. The relative read counts (% of classified and selected reads) of the bacterial (A) and archaeal domain (B) at the genus level. The

top 11 phyla and genera belonging to the bacteria domain are presented. Bacterial genera with a relative read-counts lower than 3.0%

were classified as others. All classified genera of the archaea domain are represented.

https://doi.org/10.1371/journal.pone.0248654.g004
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acidogenesis, and acetogenesis in AD [51, 52]. The members of the Anaerocella genus prefer

carbohydrates, have a role in protein degradation and produce hydrogen and fatty acids [52].

The bacteria of the Acetomicrobium genus were formerly reported to ferment amino acids and

saccharides to produce acetic acid and hydrogen [53]. Very little is known about the Herbinix
and Gracilibacter bacteria; they were found to utilize saccharide monomers and produce VFAs

and ethanol [16, 54].

Moreover, TW negatively affected the abundance of Sedimentibacter (Firmicutes), Bacter-
oides (Bacteroidetes), Treponema (Spirochaetes), and caused complete disappearance of Rumi-
noclostridium (Firmicutes) genus in the CSTRTW fermentations (Fig 4A). Less pronounced,

but similar tendencies could be observed in the composition of the microbial community in

the CoS fermentations. The bacteria of the Bacteroides genus were previously described as

plant cell wall degraders [55]. The bacteria of the genus Ruminoclostridium has a well-known

role in cellulose degradation, and the Treponema species were found to degrade plant polysac-

charides [56, 57]. The genus Sedimentibacter was also observed to be a core genus in household

biogas digesters [58]. Taken together, the disappearance of cellulose- and hemicellulose-

degrading bacteria from the CSTRTW might have led to a decrease in biogas production.

Archaeal community. Only two archaeal phyla, Euryarchaeota and Thaumarchaeota,

were detected. Euryarchaeota was the predominant phylum in all reactors. In contrast to the

TW fermentations containing 0.7% of Thaumarchaeota, the occurrence of this phylum in CS

and CoS fermentations was 3.2% and 4.2%, respectively. The Thaumarchaeota, a prevalent

group in Archaea, is present in many ecosystems, including soil, biogas plants, and marine and

fresh water [59, 60] and play important roles in both nitrogen- and carbon-cycles [61].

The distribution of archaeal sequences at the genus level shows thatMethanothrix,Methano-
sarcina, andMethanoculleus were the predominant archaeal genera in both CSTRCS and

CSTRCoS,Methanosarcina andMethanoculleus were the most abundant taxa in the CSTRTW

fermentation, andMethanothrix was barely detectable (Fig 4B). At the same time, the relative

read counts ofMethanosarcina andMethanoculleus increased by 71.0% and 10.7%, respectively,

as compared to that of CSTRCS (Fig 4B).Methanothrix species are acetoclastic methanogens

that utilize acetic acid to produce methane [62]; therefore, their disappearance is surprising and

may be due to their inability to utilize hydrogen and carbon-dioxide as substrates for methano-

genesis [63]. The genusMethanosarcina is able to utilize acetate, CO2, and H2 for methane pro-

duction [48]. The genusMethanoculleus is hydrogenotrophic methanogen utilizing CO2 and H2

for methane production [64–66]. According to a previous study [67], methanogens undertake

the hydrogenotrophic pathway under stressful conditions. Moreover, the high soluble organic

content of the applied substrate could promote the hydrogen-utilizing methanogenes in the

reactors [67]. From these data, it might be concluded, that—in TW fermentations—the biodi-

versity and the number of the dominant genera in the archaeal domain has decreased.

Tomatine and tomatidine toxicity

TW has been found to contain bioactive compounds such as glycoalkaloids, i.e., tomatine and

tomatidine, and phenols. Tomatine and tomatidine have been reported to have antimicrobial

and antifungal effects under various conditions [9–11]; therefore, the effect of tomatine and

tomatidine on batch fermentation was tested. Tomatidine, had no effect on the fermentation

(The methane yields at 0.0000, 0.0025, 0.0250, 0.2500, 2.5000 μg/mL tomatidine concentra-

tions were 523.7±2.8, 522.9±8.5, 524.0±6.2, 525.2±6.5, 523.7±7.0. In contrast, tomatine could

inhibit the methane formation at 0.0250, 0.2500, 2.5000 μg/mL concentrations (Fig 5).

Tomatine’s negative effect was relatively stronger at the beginning of the fermentation;

then, the effect gradually decreased until the end (S3 Fig). The decrease of the negative effect
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could be due to the microbial adaptation to tomatine (the time is likely too short) or tomatine’s

decomposition during fermentation. Further analysis is necessary to address these

possibilities.

Phytotoxicity test

The evaluation of sewage sludge’s toxicity is important for assessing the applicability of the bio-

gas plants’ effluents for agricultural purposes. Nowadays, phytotoxicity tests have attracted

more attention and gained wider acceptance [41]. Seed germination and radicle length moni-

toring are the most common phytotoxicity tests. Hence, we determined germination indexes

(GIs) of Lactuca sativa L. seeds and measured the radicle lengths (RLs) to assess the phytotox-

icity of the various effluents from CS, TW, and CoS fermentations. Samples were taken from

the CW-AD fermenters at the starting point, the midpoint, and the endpoint of the continuous

fermentation experiments. GIs and RLs of lettuce were measured on the first, second, and

third day. The effluent of CS, TW, and CoS fermentations, at 5%v/v effluent concentration,

had no effect on the germination of lettuce seeds on the third day. On the other hand, the efflu-

ents applied at 5v/v% had minor negative effects on RL, while 3 v/v% effluents slightly

increased the RL in all samples. Therefore, at 3 v/v%, none of the CW-AD effluents were phy-

totoxic on lettuce, and these effluents could be used in agriculture as a fertilizer.

Conclusions

Tomato waste (TW), i.e., tomato stems and leaves, seems to be a promising substrate for biogas

production since it has relatively low lignin and hemicellulose content and a lower C/N ratio

than CS. Batch fermentation experiments confirmed that TW could be a promising substrate

for biogas production both as mono-substrate or co-substrate with CS. However, in

Fig 5. The effect of tomatine concentration on methane production in a batch experiment on day 16. The methane

production of the reactors containg 2.5000, 0.2500, 0.0250, or 0.0025 μg/mL tomatine are shown to have significant

differences, according to Dunnett’s multiple comparison test (n = 3, p� 0.05).

https://doi.org/10.1371/journal.pone.0248654.g005
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continuous AD systems, the involvement of TW decreased the biogas production. The fermen-

tation parameters of the continuous AD experiments, such as pH, volatile fatty acid content,

and NH4
+ concentration, were optimal in all cases; thus, TW might have an inhibitory effect

on the microbial community. The negative effect of tomatine on the biogas yield was con-

firmed in batch fermentation experiments, therefore TW should be applied as co-substrate in

real applications.

The metagenomic analyses of the microbial composition in the fermentations revealed sig-

nificant rearrangements, and reduced biodiversity in the microbial community in TW’s

presence.

Agricultural usage of the fermentation effluent requires preliminary tests, including phyto-

toxicity assays. It has been demonstrated that the effluent of TW-containing fermentations

had no toxic effect on L. sativa var. capitata germination.

The results demonstrated that tomato waste could be a good mono-substrate in batch fer-

mentations or a co-substrate with corn stover in proper ratio in continuous anaerobic fermen-

tations for biogas production. However, further optimization, including pretreatments or the

application of thermophilic conditions, might further improve the process.

These results also point to the importance of running long-term continuous fermentations

to test the suitability of a novel biomass substrate for industrial biogas production.

Supporting information

S1 Fig. A, Kinetics of the produced methane from corn stover (CS) and tomato waste (TW) in

batch experiment. B, Cumulative methane production of CS and TW. There are not significant

differences between the used substrates according to the Dunnett’s multiple comparison test

(n = 3, p�0.05).

(TIF)

S2 Fig. α-diversity analysis for the fed-batch reactors fed with Corn Stover (CS), Tomato

Waste (TW) and Co-Substrate (CoS). 3–3 technical parallel/reactor.

(TIF)

S3 Fig. Effect of tomatine on the daily cumulative biomethane production. The tested con-

centrations were the following: 2.5000, 0.2500, 0.0250 and 0.0025 μg/mL.

(TIF)
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Formal analysis: Kornél L. Kovács, Balázs Kakuk.
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59. Costa OYA, Souto BM, Tupinambá DD, Bergmann JC, Kyaw CM, Kruger RH, et al. Microbial diversity

in sugarcane ethanol production in a Brazilian distillery using a culture-independent method. J Ind

Microbiol Biotechnol. 2015; 42: 73–84. https://doi.org/10.1007/s10295-014-1533-1 PMID: 25404204

60. Brochier-Armanet C, Gribaldo S, Forterre P. Spotlight on the Thaumarchaeota. ISME Journal.

2012. pp. 227–230. https://doi.org/10.1038/ismej.2011.145 PMID: 22071344

PLOS ONE Biogas production from tomato bio-waste

PLOS ONE | https://doi.org/10.1371/journal.pone.0248654 March 17, 2021 16 / 17

https://doi.org/10.1007/s13762-017-1386-z
https://doi.org/10.1007/s13762-017-1386-z
https://doi.org/10.1038/nmeth.2089
http://www.ncbi.nlm.nih.gov/pubmed/22930834
https://doi.org/10.1016/0141-4607%2879%2990011-8
https://doi.org/10.1371/journal.pone.0097265
http://www.ncbi.nlm.nih.gov/pubmed/24817003
https://doi.org/10.3390/en12010026
https://doi.org/10.3390/en12010026
https://doi.org/10.1016/j.biortech.2018.08.061
https://doi.org/10.1016/j.biortech.2018.08.061
http://www.ncbi.nlm.nih.gov/pubmed/30212770
https://doi.org/10.1186/s13068-018-1010-6
http://www.ncbi.nlm.nih.gov/pubmed/29387172
https://doi.org/10.1038/s41598-017-15784-w
http://www.ncbi.nlm.nih.gov/pubmed/29247239
https://doi.org/10.5772/intechopen.82815
https://doi.org/10.1016/j.biortech.2018.09.107
http://www.ncbi.nlm.nih.gov/pubmed/30290321
https://doi.org/10.2323/jgam.58.405
http://www.ncbi.nlm.nih.gov/pubmed/23337575
https://doi.org/10.1128/genomeA.00581-18
https://doi.org/10.1128/genomeA.00581-18
http://www.ncbi.nlm.nih.gov/pubmed/29954899
https://doi.org/10.1016/j.biortech.2009.03.029
https://doi.org/10.1016/j.biortech.2009.03.029
http://www.ncbi.nlm.nih.gov/pubmed/19362824
https://doi.org/10.1016/j.watres.2009.11.048
http://www.ncbi.nlm.nih.gov/pubmed/20022352
https://doi.org/10.1016/j.syapm.2014.09.004
https://doi.org/10.1016/j.syapm.2014.09.004
http://www.ncbi.nlm.nih.gov/pubmed/25467553
https://doi.org/10.1016/j.jbiotec.2014.08.024
https://doi.org/10.1016/j.jbiotec.2014.08.024
http://www.ncbi.nlm.nih.gov/pubmed/25173616
https://doi.org/10.1186/s13068-015-0339-3
https://doi.org/10.1186/s13068-015-0339-3
http://www.ncbi.nlm.nih.gov/pubmed/26413157
https://doi.org/10.1007/s10295-014-1533-1
http://www.ncbi.nlm.nih.gov/pubmed/25404204
https://doi.org/10.1038/ismej.2011.145
http://www.ncbi.nlm.nih.gov/pubmed/22071344
https://doi.org/10.1371/journal.pone.0248654


61. Pester M, Schleper C, Wagner M. The Thaumarchaeota: An emerging view of their phylogeny and eco-

physiology. Curr Opin Microbiol. 2011; 14: 300–306. https://doi.org/10.1016/j.mib.2011.04.007 PMID:

21546306

62. Liu C, Sun D, Zhao Z, Dang Y, Holmes DE. Methanothrix enhances biogas upgrading in microbial elec-

trolysis cell via direct electron transfer. Bioresour Technol. 2019; 291: 121877. https://doi.org/10.1016/j.

biortech.2019.121877 PMID: 31376672

63. Patel GB, Sprott GD. Methanosaeta concilii gen. nov., sp. nov. (’Methanothrix concilii’) and Methano-

saeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol. 1990; 40: 79–82. https://doi.org/10.

1099/00207713-40-1-79

64. Cheng L, Qiu TL, Li X, Wang WD, Deng Y, Yin XB, et al. Isolation and characterization of Methanocul-

leus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiol Lett. 2008; 285: 65–71. https://

doi.org/10.1111/j.1574-6968.2008.01212.x PMID: 18557787
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