24 research outputs found
Reducing the Arity in Unbiased Black-Box Complexity
We show that for all the -ary unbiased black-box
complexity of the -dimensional \onemax function class is . This
indicates that the power of higher arity operators is much stronger than what
the previous bound by Doerr et al. (Faster black-box algorithms
through higher arity operators, Proc. of FOGA 2011, pp. 163--172, ACM, 2011)
suggests.
The key to this result is an encoding strategy, which might be of independent
interest. We show that, using -ary unbiased variation operators only, we may
simulate an unrestricted memory of size bits.Comment: An extended abstract of this paper has been accepted for inclusion in
the proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2012
Playing Mastermind With Constant-Size Memory
We analyze the classic board game of Mastermind with holes and a constant
number of colors. A result of Chv\'atal (Combinatorica 3 (1983), 325-329)
states that the codebreaker can find the secret code with
questions. We show that this bound remains valid if the codebreaker may only
store a constant number of guesses and answers. In addition to an intrinsic
interest in this question, our result also disproves a conjecture of Droste,
Jansen, and Wegener (Theory of Computing Systems 39 (2006), 525-544) on the
memory-restricted black-box complexity of the OneMax function class.Comment: 23 page
Toward a complexity theory for randomized search heuristics : black-box models
Randomized search heuristics are a broadly used class of general-purpose algorithms. Analyzing them via classical methods of theoretical computer science is a growing field. While several strong runtime bounds exist, a powerful complexity theory for such algorithms is yet to be developed. We contribute to this goal in several aspects. In a first step, we analyze existing black-box complexity models. Our results indicate that these models are not restrictive enough. This remains true if we restrict the memory of the algorithms under consideration. These results motivate us to enrich the existing notions of black-box complexity by the additional restriction that not actual objective values, but only the relative quality of the previously evaluated solutions may be taken into account by the algorithms. Many heuristics belong to this class of algorithms. We show that our ranking-based model gives more realistic complexity estimates for some problems, while for others the low complexities of the previous models still hold. Surprisingly, our results have an interesting game-theoretic aspect as well.We show that analyzing the black-box complexity of the OneMaxn function classâa class often regarded to analyze how heuristics progress in easy parts of the search spaceâis the same as analyzing optimal winning strategies for the generalized Mastermind game with 2 colors and length-n codewords. This connection was seemingly overlooked so far in the search heuristics community.Randomisierte Suchheuristiken sind vielseitig einsetzbare Algorithmen, die aufgrund ihrer hohen FlexibilitĂ€t nicht nur im industriellen Kontext weit verbreitet sind. Trotz zahlreicher erfolgreicher Anwendungsbeispiele steckt die Laufzeitanalyse solcher Heuristiken noch in ihren Kinderschuhen. Insbesondere fehlt es uns an einem guten VerstĂ€ndnis, in welchen Situationen problemunabhĂ€ngige Heuristiken in kurzer Laufzeit gute Lösungen liefern können. Eine KomplexitĂ€tstheorie Ă€hnlich wie es sie in der klassischen Algorithmik gibt, wĂ€re wĂŒnschenswert. Mit dieser Arbeit tragen wir zur Entwicklung einer solchen KomplexitĂ€tstheorie fĂŒr Suchheuristiken bei. Wir zeigen anhand verschiedener Beispiele, dass existierende Modelle die Schwierigkeit eines Problems nicht immer zufriedenstellend erfassen. Wir schlagen daher ein weiteres Modell vor. In unserem Ranking-Based Black-Box Model lernen die Algorithmen keine exakten Funktionswerte, sondern bloĂ die Rangordnung der bislang angefragten Suchpunkte. Dieses Modell gibt fĂŒr manche Probleme eine bessere EinschĂ€tzung der Schwierigkeit. Wir zeigen jedoch auch, dass auch im neuen Modell Probleme existieren, deren KomplexitĂ€t als zu gering einzuschĂ€tzen ist. Unsere Ergebnisse haben auch einen spieltheoretischen Aspekt. Optimale Gewinnstrategien fĂŒr den Rater im Mastermindspiel (auch SuperHirn) mit n Positionen entsprechen genau optimalen Algorithmen zur Maximierung von OneMaxn-Funktionen. Dieser Zusammenhang wurde scheinbar bislang ĂŒbersehen. Diese Arbeit ist in englischer Sprache verfasst
A New Randomized Algorithm to Approximate the Star Discrepancy Based on Threshold Accepting
We present a new algorithm for estimating the star discrepancy of arbitrary point sets. Similar to the algorithm for discrepancy approximation of Winker and Fang [SIAM J. Numer. Anal. 34 (1997), 2028{2042] it is based on the optimization algorithm threshold accepting. Our improvements include, amongst others, a non-uniform sampling strategy which is more suited for higher-dimensional inputs and additionally takes into account the topological characteristics of given point sets, and rounding steps which transform axis-parallel boxes, on which the discrepancy is to be tested, into critical test boxes. These critical test boxes provably yield higher discrepancy values, and contain the box that exhibits the maximum value of the local discrepancy. We provide comprehensive experiments to test the new algorithm. Our randomized algorithm computes the exact discrepancy frequently in all cases where this can be checked (i.e., where the exact discrepancy of the point set can be computed in feasible time). Most importantly, in higher dimension the new method behaves clearly better than all previously known methods
Faster Black-Box Algorithms Through Higher Arity Operators
We extend the work of Lehre and Witt (GECCO 2010) on the unbiased black-box
model by considering higher arity variation operators. In particular, we show
that already for binary operators the black-box complexity of \leadingones
drops from for unary operators to . For \onemax, the
unary black-box complexity drops to O(n) in the binary case.
For -ary operators, , the \onemax-complexity further decreases to
.Comment: To appear at FOGA 201
In Richtung einer KomplexitĂ€tstheorie fĂŒr randomisierte Suchheuristiken : Black-Box-Modelle
Randomized search heuristics are a broadly used class of general-purpose algorithms. Analyzing them via classical methods of theoretical computer science is a growing field. While several strong runtime bounds exist, a powerful complexity theory for such algorithms is yet to be developed. We contribute to this goal in several aspects. In a first step, we analyze existing black-box complexity models. Our results indicate that these models are not restrictive enough. This remains true if we restrict the memory of the algorithms under consideration. These results motivate us to enrich the existing notions of black-box complexity by the additional restriction that not actual objective values, but only the relative quality of the previously evaluated solutions may be taken into account by the algorithms. Many heuristics belong to this class of algorithms. We show that our ranking-based model gives more realistic complexity estimates for some problems, while for others the low complexities of the previous models still hold. Surprisingly, our results have an interesting game-theoretic aspect as well.We show that analyzing the black-box complexity of the OneMaxn function classâa class often regarded to analyze how heuristics progress in easy parts of the search spaceâis the same as analyzing optimal winning strategies for the generalized Mastermind game with 2 colors and length-n codewords. This connection was seemingly overlooked so far in the search heuristics community.Randomisierte Suchheuristiken sind vielseitig einsetzbare Algorithmen, die aufgrund ihrer hohen FlexibilitĂ€t nicht nur im industriellen Kontext weit verbreitet sind. Trotz zahlreicher erfolgreicher Anwendungsbeispiele steckt die Laufzeitanalyse solcher Heuristiken noch in ihren Kinderschuhen. Insbesondere fehlt es uns an einem guten VerstĂ€ndnis, in welchen Situationen problemunabhĂ€ngige Heuristiken in kurzer Laufzeit gute Lösungen liefern können. Eine KomplexitĂ€tstheorie Ă€hnlich wie es sie in der klassischen Algorithmik gibt, wĂ€re wĂŒnschenswert. Mit dieser Arbeit tragen wir zur Entwicklung einer solchen KomplexitĂ€tstheorie fĂŒr Suchheuristiken bei. Wir zeigen anhand verschiedener Beispiele, dass existierende Modelle die Schwierigkeit eines Problems nicht immer zufriedenstellend erfassen. Wir schlagen daher ein weiteres Modell vor. In unserem Ranking-Based Black-Box Model lernen die Algorithmen keine exakten Funktionswerte, sondern bloĂ die Rangordnung der bislang angefragten Suchpunkte. Dieses Modell gibt fĂŒr manche Probleme eine bessere EinschĂ€tzung der Schwierigkeit. Wir zeigen jedoch auch, dass auch im neuen Modell Probleme existieren, deren KomplexitĂ€t als zu gering einzuschĂ€tzen ist. Unsere Ergebnisse haben auch einen spieltheoretischen Aspekt. Optimale Gewinnstrategien fĂŒr den Rater im Mastermindspiel (auch SuperHirn) mit n Positionen entsprechen genau optimalen Algorithmen zur Maximierung von OneMaxn-Funktionen. Dieser Zusammenhang wurde scheinbar bislang ĂŒbersehen. Diese Arbeit ist in englischer Sprache verfasst
Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems
AbstractThe well-known star discrepancy is a common measure for the uniformity of point distributions. It is used, e.g., in multivariate integration, pseudo random number generation, experimental design, statistics, or computer graphics.We study here the complexity of calculating the star discrepancy of point sets in the d-dimensional unit cube and show that this is an NP-hard problem.To establish this complexity result, we first prove NP-hardness of the following related problems in computational geometry: Given n points in the d-dimensional unit cube, find a subinterval of minimum or maximum volume that contains k of the n points.Our results for the complexity of the subinterval problems settle a conjecture of E. ThiĂ©mard [E. ThiĂ©mard, Optimal volume subintervals with k points and star discrepancy via integer programming, Math. Meth. Oper. Res. 54 (2001) 21â45]