565 research outputs found

    On the well-posedness of a mathematical model describing water-mud interaction

    Full text link
    In this paper we consider a mathematical model describing the two-phase interaction between water and mud in a water canal when the width of the canal is small compared to its depth. The mud is treated as a non-Netwonian fluid and the interface between the mud and fluid is allowed to move under the influence of gravity and surface tension. We reduce the mathematical formulation, for small boundary and initial data, to a fully nonlocal and nonlinear problem and prove its local well-posedness by using abstract parabolic theory.Comment: 16 page

    Aquaculture induced erosion of tropical coastlines throws coastal communities back into poverty

    Get PDF
    Shallow tropical coastlines harbour unique mangrove ecosystems, which support livelihoods and provide a natural barrier against coastal flooding. Non-sustainable land-use practices, such as large-scale clear cutting of mangroves for aquaculture, ground water withdrawal and alteration of river flows, result in rapid subsidence. The collapse of aquaculture production, due to pollution and disease, is followed by coastal erosion, damage to infrastructure, intrusion of salt water and coastal flooding. Standard engineered interventions for protection often fail or are extremely expensive in these soft muddy environments. Subsidence and erosion render re-planting of mangroves in front of retreating coastlines impossible. Short-term solutions should focus on restoration of abiotic conditions, such as hydrology and sediment fluxes, to facilitate rapid establishment of protective mangrove belts. However, to ensure long-term sustainability, improved governance frameworks are required that put in place criteria for sustainable aquaculture, guide coastal infrastructure designs and limit ground water extraction

    Interaction of suspended cohesive sediment and turbulence

    Get PDF
    This paper describes the work done in the COSINUS project, carried out within the framework of the European MAST3 research programme, on the interaction between suspended (cohesive) sediment and turbulence, with particular emphasis on its modelling. Specific attention is given to the modelling of buoyancy damping effects and turbulence production due to internal waves. Finally, some experimental results are presented on the effect of advected turbulence to the entrainment of fluid mud

    Man-induced regime shifts in small estuaries - II: a comparison of rivers

    Get PDF
    This is Part II of two papers on man-induced regime shifts in small, narrow, and converging estuaries, with focus on the interaction between effective hydraulic drag, fine sediment import, and tidal amplification, induced by river engineering works, e.g., narrowing and deepening. Paper I describes a simple linear analytical model for the tidal movement in narrow, converging estuaries and a conceptual model on the response of tidal rivers to river engineering works. It is argued that such engineering works may set in motion a snowball effect bringing the river into an alternative steady state. Part II analyses the historic development in tidal range in four rivers, e.g., the Elbe, Ems, Loire, and Scheldt, all in northwest Europe; data are available for many decades, up to a century. We use the analytical model derived in Part I, showing that the effective hydraulic drag in the Ems and Loire has decreased considerably over time, as anticipated in Part I. We did not find evidence that the Upper Sea Scheldt is close to its tipping point towards hyperturbid conditions, but risks have been identified. In the Elbe, tidal reflections against the profound step in bed level around Hamburg seem to have affected the tidal evolution in the last decades. It is emphasized that the conceptual picture sketched in these papers is still hypothetical and needs to be validated, for instance through hind-cast modeling of the evolution of these rivers. This will not be an easy task, as historical data for a proper calibration of the models required are scarce

    The Importance of Organic Content to Fractal Floc Properties in Estuarine Surface Waters: Insights From Video, LISST, and Pump Sampling

    Get PDF
    To better understand the nature of flocs of varying organic content in estuarine surface waters, Laser in situ Scattering and Transmissometry, video settling, and pump sampling were deployed in the York River estuary. A new in situ method was developed to simultaneously solve the floc fractal dimension (F), primary particle size (d p ), and primary particle density (ρ p ) by fitting a simple fractal model to observations of effective floc density (∆ρ) as a function of floc diameter (d f ), while ensuring that the integrated particle size distribution was consistent with measurements of bulk apparent density (ρ a ). When fractal fits were statistically justified, application of the above methods showed the bulk fraction of organic matter (f org ) to be well correlated to multiple floc properties. As f org increased, d p and ρ a also increased, while ρ p , total suspended solids (TSS), and median floc size decreased. Notably for microflocs, neither F nor ∆ρ was significantly related to either f org or TSS. This indicates that organic matter may partially displace water content within microflocs without fundamentally changing the flocs’ inorganic structure. When pooling multiple samples, a marked decrease in F was seen at the transition to macroflocs, and most strongly for high f org cases. This suggested that settling velocities \u3e_ ~1 mm/s may produce turbulent stresses that tend to tear macroflocs apart. This study also found that when the fractal theory held, ρ p had a near 1:1 correlation with the bulk dry density of filtered TSS, implying that primary particles are tightly bound aggregates of combined mineral and organic component
    corecore