31 research outputs found

    Test of Lorentz Invariance in Electrodynamics Using Rotating Cryogenic Sapphire Microwave Oscillators

    Full text link
    We present the first results from a rotating Michelson-Morley experiment that uses two orthogonally orientated cryogenic sapphire resonator-oscillators operating in whispering gallery modes near 10 GHz. The experiment is used to test for violations of Lorentz Invariance in the frame-work of the photon sector of the Standard Model Extension (SME), as well as the isotropy term of the Robertson-Mansouri-Sexl (RMS) framework. In the SME we set a new bound on the previously unmeasured κ~e−ZZ\tilde{\kappa}_{e-}^{ZZ} component of 2.1(5.7)×10−142.1(5.7)\times10^{-14}, and set more stringent bounds by up to a factor of 7 on seven other components. In the RMS a more stringent bound of −0.9(2.0)×10−10-0.9(2.0)\times 10^{-10} on the isotropy parameter, PMM=δ−β+1/2P_{MM}=\delta - \beta + {1/2} is set, which is more than a factor of 7 improvement. More detailed description of the experiment and calculations can be found in: hep-ph/0506200Comment: Final published version, 4 pages, references adde

    A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation

    Get PDF
    The High Static Low Dynamic Stiffness (HSLDS) concept is a design strategy for a nonlinear anti-vibration mount that seeks to increase isolation by lowering the natural frequency of the mount whilst maintaining the same static load bearing capacity. It has previously been proposed that an HSLDS mount could be implemented by connecting linear springs in parallel with the transverse flexure of a composite bistable plate — a plate that has two stable shapes between which it may snap. Using a bistable plate in this way will lead to lightweight and efficient designs of HSLDS mounts. This paper experimentally demonstrates the feasibility of this idea. Firstly, the quasi-static force–displacement curve of a mounted bistable plate is determined experimentally. Then the dynamic response of a nonlinear mass–spring system incorporating this plate is measured. Excellent agreement is obtained when compared to theoretical predictions based on the measured force–displacement curve, and the system shows a greater isolation region and a lower peak response to base excitation than the equivalent linear system

    Gravitational Wave Detection by Interferometry (Ground and Space)

    Get PDF
    Significant progress has been made in recent years on the development of gravitational wave detectors. Sources such as coalescing compact binary systems, neutron stars in low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free craft in space. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems in operation around the world - LIGO (USA), Virgo (Italy/France), TAMA300 and LCGT (Japan), and GEO600 (Germany/U.K.) - and in LISA, a proposed space-borne interferometer. A review of recent science runs from the current generation of ground-based detectors will be discussed, in addition to highlighting the astrophysical results gained thus far. Looking to the future, the major upgrades to LIGO (Advanced LIGO), Virgo (Advanced Virgo), LCGT and GEO600 (GEO-HF) will be completed over the coming years, which will create a network of detectors with significantly improved sensitivity required to detect gravitational waves. Beyond this, the concept and design of possible future "third generation" gravitational wave detectors, such as the Einstein Telescope (ET), will be discussed.Comment: Published in Living Reviews in Relativit

    Nanoscale Structural Plasticity of the Active Zone Matrix Modulates Presynaptic Function

    Get PDF
    The active zone (AZ) matrix of presynaptic terminals coordinates the recruitment of voltage-gated calcium channels (VGCCs) and synaptic vesicles to orchestrate neurotransmitter release. However, the spatial organization of the AZ and how it controls vesicle fusion remain poorly understood. Here, we employ super-resolution microscopy and ratiometric imaging to visualize the AZ structure on the nanoscale, revealing segregation between the AZ matrix, VGCCs, and putative release sites. Long-term blockade of neuronal activity leads to reversible AZ matrix unclustering and presynaptic actin depolymerization, allowing for enrichment of AZ machinery. Conversely, patterned optogenetic stimulation of postsynaptic neurons retrogradely enhanced AZ clustering. In individual synapses, AZ clustering was inversely correlated with local VGCC recruitment and vesicle cycling. Acute actin depolymerization led to rapid (5 min) nanoscale AZ matrix unclustering. We propose a model whereby neuronal activity modulates presynaptic function in a homeostatic manner by altering the clustering state of the AZ matrix

    Second-generation laser interferometry for gravitational wave detection: ACIGA progress

    No full text
    Reasonable event rate gravitational wave astronomy in the audio frequency detection band will require improving the sensitivity of long-baseline interferometer-based gravitational wave detectors currently under construction by at least a factor of 10. In this summary we report research being carried out by the Australian Consortium for Interferometric Gravitational Astronomy towards this end.D E McClelland, S M Scott, M B Gray, D A Shaddock, B J Slagmolen, A Searle, D G Blair, L Ju, J Winterflood, F Benabid, M Baker, J Munch, P J Veitch, M W Hamilton, M Ostermeyer, D Mudge, D Ottaway and C Hollit

    Search for black hole ringdown signals in LIGO S4 data

    No full text
    Copyright © Institute of Physics and IOP Publishing Limited 2006 Peter Veitch, Jesper Munch, Damien Mudge, Aidan Brooks and David Hosken are members of the LIGO Scientific CollaborationIf a coalescing binary system results in a black hole we expect it to be a perturbed Kerr black hole and to radiate gravitational waves in the form of ringdowns. A search for such signals in data from the fourth LIGO science run is currently being developed. In this paper we outline the theory on which this search is based and use it to predict the range for this data set.Lisa M Goggin (for the LIGO Scientific Collaboration
    corecore