3,237 research outputs found

    Centre of mass acceleration-derived variables detects differences between runners of different abilities and fatigue-related changes during a long distance over ground run

    Get PDF
    Background: Wireless accelerometers provide a method of performing running assessments in sports-specific environments. The purpose of this study was to investigate differences in running movement using centre of mass acceleration-derived variables between runners of varying skill levels and examine fatigue-related changes during a long distance over ground run. Methods: Ninety-two runners performed a self-selected paced long distance over ground run, with a tri-axial accelerometer attached to their low back. Runners were divided into four groups (elite, advanced, intermediate and slow) based on their finishing run time. Spatiotemporal (contact time, flight time, step frequency), dynamic postural stability (ratio of root mean square of accelerations), dynamic loading (peak impact and braking accelerations) and variability (step and stride regularity), were derived from acceleration data. Speed and acceleration-derived variables were used to investigate between group differences and within group fatigue-related changes. Results: Faster runners (elite and advanced groups) exhibited significantly shorter contact times and higher step frequencies than the slow group. Fatigue-related changes throughout the run were only observed amongst the slower runners (intermediate and slow groups). The main changes in the intermediate group were an increase in ratio of root mean square in mediolateral acceleration, and a decrease in speed in the slow group. Conclusion: The shorter contact times and higher step frequencies and no fatigue-related changes exhibited by the faster runners indicate an efficient running movement pattern. Fatigue-related changes in the slower runners were a decrease in postural dynamic stability in mediolateral direction in the intermediate group and a decrease in speed in the slow group which impacted on performance. These runners would benefit from exercise interventions and pacing strategies to reduce these fatigue-related changes and improve performance

    Validation of a Single Inertial Sensor for Measuring Running Kinematics Overground During a Prolonged Run

    Get PDF
    This article is made available in accordance with the publisher's statement on Open access.Introduction: The purpose of this study was to validate acceleration data from a single inertial sensor containinga tri-axial accelerometer, whilst running overground during a prolonged run against a motion analysis system. Methods: An inertial sensor was placed on the low back of 10 runners who performed an 8 km run on a treadmill.To provide validation of the sensor, data were collected as runners ran along a runway through a motion analysis system at the beginning and throughout the run.Results: High levels of agreement between the two systems were found in the craniocaudal and mediolateral acceleration, with antero posterior having the least agreement with greatest Typical Error of the Estimate (0.66 sample points). Very high to extremely high correlations across all testing times were found in all three directions of accelerations (r=0.75 to 0.95). Heel strike and toe off events were identified in anteroposterior and craniocaudal acceleration, with high levels of agreement and extremely high correlations (r=0.99) between the two systems.Minimal variation and change in agreement and correlation between the data at each testing time were found. Discussion: This study provides evidence that a single inertial sensor placed on the low back is valid for measuring three-dimensional acceleration in overground running during a prolonged run. Further analysis identified specific events of heel strike and toe off and were comparable between the two systems. The minimal variation and change in agreement between the two systems during the run indicates the adherence method of the inertial sensor was suitable. Conclusions: The results of this study indicate that data collected from a single inertial sensor is highly correlated with simultaneous data collected using a motion analysis system, and has the capability to identify heelstrike and toe off events in overground running throughout a prolonged fatiguing run

    Synthesis and Oxidation Catalysis of [Tris(oxazolinyl)borato]cobalt(II) Scorpionates

    Get PDF
    The reaction of CoCl2·THF and thallium tris(4,4-dimethyl-2-oxazolinyl)phenylborate (TlToM) in tetrahydrofuran (THF) provides ToMCoCl (1) in 95 % yield; however, appropriate solvents and starting materials are required to favor 1 over two other readily formed side-products, (ToM)2Co (2) and {HToM}CoCl2 (3). ESR, NMR, FTIR, and UV/Vis spectroscopies were used to distinguish these cobalt(II) products and probe their electronic and structural properties. Even after the structures indicated by these methods were confirmed by X-ray crystallography, the spectroscopic identification of trace contaminants in the material was challenging. The recognition of possible contaminants in the synthesis of ToMCoCl in combination with the paramagnetic nature of these complexes provided impetus for the utilization of X-ray powder diffraction to measure the purity of the ToMCoCl bulk sample. The X-ray powder diffraction results provide support for the bulk-phase purity of ToMCoCl in preparations that avoid 2 and 3. Thus, 1 is a precursor for new [tris(oxazolinyl)borato]cobalt chemistry, as exemplified by its reactions with KOtBu and NaOAc to give ToMCoOtBu (4) and ToMCoOAc (5), respectively. Compound 5 is a catalyst for the oxidation of cyclohexane with meta-chloroperoxybenzoic acid (mCPBA), and the rate constants and selectivity for cyclohexanol versus cyclohexanone and Δ-caprolactone were assessed

    Methods for Estimating Fluxes and Absorptions of Faint X-ray Sources

    Full text link
    X-ray sources with very few counts can be identified with low-noise X-ray detectors such as ACIS onboard the Chandra X-ray Observatory. These sources are often too faint for parametric spectral modeling using well-established methods such as fitting with XSPEC. We discuss the estimation of apparent and intrinsic broad-band X-ray fluxes and soft X-ray absorption from gas along the line of sight to these sources, using nonparametric methods. Apparent flux is estimated from the ratio of the source count rate to the instrumental effective area averaged over the chosen band. Absorption, intrinsic flux, and errors on these quantities are estimated from comparison of source photometric quantities with those of high S/N spectra that were simulated using spectral models characteristic of the class of astrophysical sources under study. The concept of this method is similar to the long-standing use of color-magnitude diagrams in optical and infrared astronomy, with X-ray median energy replacing color index and X-ray source counts replacing magnitude. Our nonparametric method is tested against the apparent spectra of 2000 faint sources in the Chandra observation of the rich young stellar cluster in the M17 HII region. We show that the intrinsic X-ray properties can be determined with little bias and reasonable accuracy using these observable photometric quantities without employing often uncertain and time-consuming methods of non-linear parametric spectral modeling. Our method is calibrated for thermal spectra characteristic of stars in young stellar clusters, but recalibration should be possible for some other classes of faint X-ray sources such as extragalactic AGN.Comment: Accepted for publication in The Astrophysical Journal. 39 pages, 15 figure

    Addition of rituximab to the CHOP regimen has no benefit in patients with primary extranodal diffuse large B-cell lymphoma

    Get PDF
    • 

    corecore