4,435 research outputs found

    Nonlinear behavior of shells of revolution under cyclic loading

    Get PDF
    A large deflection elastic-plastic analysis is presented, applicable to orthotropic axisymmetric plates and shells of revolution subjected to monotonic and cyclic loading conditions. The analysis is based on the finite-element method. It employs a new higher order, fully compatible, doubly curved orthotropic shell-of-revolution element using cubic Hermitian expansions for both meridional and normal displacements. Both perfectly plastic and strain hardening behavior are considered. Strain hardening is incorporated through use of the Prager-Ziegler kinematic hardening theory, which predicts an ideal Bauschinger effect. Numerous sample problems involving monotonic and cyclic loading conditions are analyzed. The monotonic results are compared with other theoretical solutions

    White Beam Synchrotron X-Ray Topography of Gallium Arsenide

    Get PDF
    The defect structure of gallium arsenide is being examined using white beam transmission topography. The specimens under examination are cut-and-polished, three inch diameter, single crystal substrates from various suppliers in the “as received” condition. The goal of this continuing program is to first document the existence of various crystallographic defect structures and then to establish their effect on the performance of microwave integrated circuits subsequently fabricated on the wafers. Success in establishing such a correlation might permit the use of an x-ray diffraction measurement to screen incoming material, eliminating marginal substrates and achieving a corresponding increase in yield

    Multi-Substrate Burrowing Performance and Constitutive Modeling of RoboClam: A Biomimetic Robot Based on Razor Clams

    Get PDF
    The Atlantic razor clam (Ensis directus) reduces burrowing drag by using motions of its shell to fluidize a thin layer of substrate around its body. We have developed RoboClam, a robot that digs using the same mechanisms as Ensis, to explore how localized fluidization burrowing can be extended to engineering applications. In this work we present burrowing performance results of RoboClam in two distinctly different substrates: ideally granular 1mm soda lime glass beads and cohesive ocean mudflat soil. Using a genetic algorithm to optimize RoboClam’s kinematics, the machine was able to burrow in both substrates with a power law relationship between digging energy and depth of n = 1.17. Pushing through static soil has a theoretical energy-depth power law of n = 2, which means that Ensis-inspired burrowing motions can provide exponentially higher energy efficiency. We propose a theoretical constitutive model that describes how a fluidized region should form around a contracting body in virtually any type of saturated soil. The model predicts fluidization to be a relatively local effect, extending only two to three characteristic lengths away from the body, depending on friction angle and coefficient of lateral earth pressure, two commonly measured soil parameters.Battelle Memorial InstituteBluefin RoboticsChevron Corporatio

    Electronic structure of NiS_{1-x}Se_x

    Full text link
    We investigate the electronic structure of the metallic NiS1x_{1-x}Sex_x system using various electron spectroscopic techniques. The band structure results do not describe the details of the spectral features in the experimental spectrum, even for this paramagnetic metallic phase. However, a parameterized many-body multi-band model is found to be successful in describing the Ni~2pp core level and valence band, within the same model. The asymmetric line shape as well as the weak intensity feature in the Ni~2pp core level spectrum has been ascribed to extrinsic loss processes in the system. The presence of satellite features in the valence band spectrum shows the existence of the lower Hubbard band, deep inside the pdpd metallic regime, consistent with the predictions of the dynamical mean field theory.Comment: To be published in Physical Review B, 18 pages and 5 figure

    Non-standard Hamiltonian effects on neutrino oscillations

    Full text link
    We investigate non-standard Hamiltonian effects on neutrino oscillations, which are effective additional contributions to the vacuum or matter Hamiltonian. Since these effects can enter in either flavor or mass basis, we develop an understanding of the difference between these bases representing the underlying theoretical model. In particular, the simplest of these effects are classified as ``pure'' flavor or mass effects, where the appearance of such a ``pure'' effect can be quite plausible as a leading non-standard contribution from theoretical models. Compared to earlier studies investigating particular effects, we aim for a top-down classification of a possible ``new physics'' signature at future long-baseline neutrino oscillation precision experiments. We develop a general framework for such effects with two neutrino flavors and discuss the extension to three neutrino flavors, as well as we demonstrate the challenges for a neutrino factory to distinguish the theoretical origin of these effects with a numerical example. We find how the precision measurement of neutrino oscillation parameters can be altered by non-standard effects alone (not including non-standard interactions in the creation and detection processes) and that the non-standard effects on Hamiltonian level can be distinguished from other non-standard effects (such as neutrino decoherence and decay) if we consider specific imprint of the effects on the energy spectra of several different oscillation channels at a neutrino factory.Comment: 30 pages, 6 figures, LaTeX, final version, published in Eur.Phys.J.

    Extended Classical Over-Barrier Model for Collisions of Highly Charged Ions with Conducting and Insulating Surfaces

    Full text link
    We have extended the classical over-barrier model to simulate the neutralization dynamics of highly charged ions interacting under grazing incidence with conducting and insulating surfaces. Our calculations are based on simple model rates for resonant and Auger transitions. We include effects caused by the dielectric response of the target and, for insulators, localized surface charges. Characteristic deviations regarding the charge transfer processes from conducting and insulating targets to the ion are discussed. We find good agreement with previously published experimental data for the image energy gain of a variety of highly charged ions impinging on Au, Al, LiF and KI crystals.Comment: 32 pages http://pikp28.uni-muenster.de/~ducree

    Toward a Theory of Innovation

    Full text link
    The purpose of this article is to eliminate further conceptual obstacles to the develop ment of a workable theory of innovation and to move toward a better theoretic statement. The approach to overcoming the conceptual problems centers primarily around four ideas: (1) building a theory around the "innovation decision" as the unit of analysis, rather than either innovations or adopters: (2) lifting the level of general ity of independent variables so that a great deal of statistical interaction is avoided; (3) splitting the act of innovation into two stages, diffusion and adoption, to eliminate the confounding effects of time of awareness in studies of innovation; (4) introducing the idea of a "fair-trial point" into the conceptualization of innovation, solving sev eral additional problems at once.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68286/2/10.1177_009539977901000401.pd

    Loss of expression of FANCD2 protein in sporadic and hereditary breast cancer

    Get PDF
    Fanconi anemia (FA) is a recessive disorder associated with progressive pancytopenia, multiple developmental defects, and marked predisposition to malignancies. FA is genetically heterogeneous, comprising at least 12 complementation groups (A–M). Activation of one of the FA proteins (FANCD2) by mono-ubiquitination is an essential step in DNA damage response. As FANCD2 interacts with BRCA1, is expressed in proliferating normal breast cells, and FANCD2 knockout mice develop breast tumors, we investigated the expression of FANCD2 in sporadic and hereditary invasive breast cancer patients to evaluate its possible role in breast carcinogenesis. Two tissue microarrays of 129 and 220 sporadic breast cancers and a tissue microarray containing 25 BRCA1 germline mutation-related invasive breast cancers were stained for FANCD2. Expression results were compared with several clinicopathological variables and tested for prognostic value. Eighteen of 96 (19%) sporadic breast cancers and two of 21 (10%) BRCA1-related breast cancers were completely FANCD2-negative, which, however, still showed proliferation. In the remaining cases, the percentage of FANCD2-expressing cells correlated strongly with mitotic index and percentage of cells positive for the proliferation markers Ki-67 and Cyclin A. In immunofluorescence double staining, coexpression of FANCD2 and Ki-67 was apparent. In survival analysis, high FANCD2 expression appeared to be prognostically unfavorable for overall survival (p = 0.03), independent from other major prognosticators (p = 0.026). In conclusion, FANCD2 expression is absent in 10–20% of sporadic and BRCA1-related breast cancers, indicating that somatic inactivating (epi)genetic events in FANCD2 may be important in both sporadic and hereditary breast carcinogenesis. FANCD2 is of independent prognostic value in sporadic breast cancer
    corecore