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Abstract

A large-deflection elastic-plastic analysis is presented,

applicable to orthotropic axisymmetric plates and shells of

revolution subjected to monotonic and cyclic loading condi-

tions. The analysis is based on the finite-element method.

It employs a new higher order, fully compatible, doubly curved

orthotropic shell-of-revolution element using cubic Hermitian

expansions for both meridional and normal displacements. Both

perfectly plastic and strain hardening behavior are considered.

Strain hardening is incorporated through use of the Prager-

Ziegler kinematic hardening theory, which predicts an ideal

Bauschinger effect. Numerous sample problems involving monotonic
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and cyclic loading conditions are analyzed. The monotonic

results are compared with other theoretical solutions. Ex-

perimental verification of the accuracy of the analysis is

also provided by comparison with results obtained from a

series of tests for centrally monotonically-loaded circular

plates that are simply supported at their edges.
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I. Introduction

The need for a capability of determining the reserve

strength of shell structures accurately and predicting their

failure loads under a variety of realistic loading conditions

has stimulated substantial efforts toward developing methods

for the nonlinear analysis of these structures. For shells

of revolution, effects resulting from both geometric [1-3]

and material nonlinearities [4-6] have been considered sepa-

rately, and in several instances the simultaneous effects of

both types of nonlinearity have been treated [7-9]. In

general, these studies have been concerned solely with
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monotonic loading conditions, and the effect of material

nonlinearity is accounted for starting at a load level cor-

responding to the elastic limit and up to a maximum speci-

fied load, or until structural failure occurs. Only in rare

instances have unloading and reversed loading been considered

[10,11].

In the present paper, a large-deflection, elastic-plastic

analysis is presented> applicable to orthotropic axisymmetric

plates and shells of revolution subjected to monotonic and

cyclic loading conditions. The theoretical work is based on

the stiffness method of finite-element analysis in conjunc-

tion with the concept of initial strains, material nonlin-

earity being introduced by interpreting plastic strains as

initial strains. Large-deflection effects are included via

an incremental Eulerian approach, and the results are valid

for moderate rotations and small strains. Both strain harden-

ing and perfectly plastic material behavior are considered.

Strain hardening is represented by using the Prager-Ziegler

[12,13] kinematic hardening theory, so that the Bauschinger

effect is accounted for.

A new higher order, fully compatible, doubly curved,

orthotropic shell-of-revolution element [14] employing cubic



Hermitian expansions for both meridional and normal displace-

ments has been developed and used to obtain the results pre-

sented. Verification of the accuracy of the analysis has

been accomplished by comparison with previously obtained nu-

merical results.

An experimental program was initiated to gain further

insight into the complex response associated with both types

of nonlinearities and to provide further verification of the

numerical solutions. Toward these ends, a series of experi-

ments were performed on centrally loaded, simply supported,

circular plates. Agreement between data obtained from these

experiments and the present analysis ranges from good to ex-

cellent for cases thus far restricted to monotonic loading.

II. Development of Governing Matrix Equations

The method employed in the present paper uses an incre-

mental formulation for the large-deflection, elasto-plastic

problem and is based on a variational principle presented in

Ref. 15. The approach used here is identical in concept to

that outlined in Ref. 8, with the exception that plasticity

is treated by means of the initial strain concept [16,17]

in the present work, whereas the tangent modulus method [18]

is used in Ref. 8.



As the initial step towards the development of the

governing matrix equation, we choose a reference state, TR,

in the body, for which the states of stress, strain, and de-

formation are known. We now choose the next state to be in-

crementally adjacent to the initial state with all quantities

referred to the reference state, i.e., x. « X. + Au., where

x. are the new coordinates of an arbitrary point, X. are

the original coordinates in the local coordinate system, and

Au. are the incremental deflections of the point in going

from the reference state to the current state [15].

At the start of a load increment, let the stresses, sur-

face tractions, and body forces acting on the structure be

denoted by S.., T^ , and F. . These quantities are re-

ferred to a unit of "undeformed" area, i.e., before the addi-

tion of the current load increment. They take into account

the effects of any previous initial strains present in the

body. The application of an incremental load to the body,

expressed in terms of AT. and AF., result in additional

stresses Aa.., displacements Au., plastic (initial)strains

Ae.., and the distortion of the body to its new configuration

given by x..

The total stresses, surface tractions, and body forces,

referred to the unit undeformed area and in the new coordinate

directions x., are



Aaij
(1)

AT

The development of the governing matrix equation may be

approached by one of several alternative procedures. The

authors choose here the principle of virtual work, which,

for an incremental method, may be written as [15]:

dv

(T
(0)

AT.

AFi)6(Aui)dV

(2)

Here Ae.. is Green's strain tensor that refers to the

original or "undeformed" volume of the element

Aeij (3)

In this expression Ae.. are the terms that yield a linear

strain-displacement relationship, while AT^.. are those

associated with the nonlinear terms in the strain-displace-

ment relationship. The incremental constitutive equations

are taken to be in the following form



A a i j = Eijkl(Aekl (4)

where Ac?, are the initial or plastic strains developed in

the current increment based upon the "undeformed" geometry.

These are assumed to be small and independent of the total

strains. The terms, E..,,, are the linearly elastic mate-

rial properties.

Substituting the stress-strain relations, Eqs. (4) and

(3) into Eq. (2) yields

J

AT16(Aui)dS +

Ae?. E...., ,ijkl v kl dV -x

V JV
(5)

ds dv

AT1ijEijkl5<Aekl)dV ^ 6(Ai l i j)dV

V
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We now have an equation that is similar in form to that

presented in Ref. 8, with the exception of those terms asso-

ciated with initial strains. As in Ref. 8, it is assumed

that, although total strains may be large, incremental

strains are small, and thus the last two terms of Eq. (5)

(which are cubic and quartic in displacement increments)

may be neglected when compared to terms that are quadratic

in displacement increments. These terms that are neglected

lead to the matrices [N,] and [N2] of Ref. 19 and must be

retained in a total Lagrangian formulation. An additional

matrix due to the presence of initial strains is also gen-

erated from the last term of Eq. (5), but since it contrib-

utes terms of the same order of magnitude as the other term

neglected, it too need not be retained.

We then have



[s i .6(An i j)+Aek lE i j k l6(Ae. j)]dV

ATi6(Aui)dS AF16(Aui)dV

(6)

Eijkl5<Aekl>dV

Sij5(Aeij)1V

V

,(0) ,(0)If the initial stress state, S.., T> ', and F> y, is in

equilibrium at the start of the incremental step, then the

last three terms of Eq. (6) vanish and we get the standard

incremental initial-strain large-deflection formulation:

Jv

ATi6(Aui)dS

AF.6(Aui)dV + Ae?.E. ... ., , nij xjkl x kl

(7)

)dV .

The first term of this equation yields the initial stress

stiffness matrix after the rotations(or other nonlinear terms)
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have been expressed in terms of nodal degrees of freedom. The

second term leads to the conventional stiffness matrix. The

first two terms on the right side lead to the consistent load

vectors for surface tractions and body forces, respectively.

The last term on the right side leads to the initial-strain

stiffness matrix which is multiplied by a vector of plastic

(initial) strains to be used as an "effective" plastic load

vector.

Because we use a predictor procedure, however, the ini-

tial stress state may not be in equilibrium before the cur-

rent load step. The results for the next step may be ad-

justed or corrected for this imbalance by introducing a

residual force given by [8]

Ri =
Js Jv Jv (8)

Any discrepancies due to the neglect of the change in

direction of the load are also accounted for in Eq. (8),

since the total load is applied to the structure in its cur-

rent configuration. The total stresses a., obtained at the

end of load increment N become the initial stresses for

step (N + 1). These must now be related to the new deformed

area (which is the undeformed area for step N + 1). The
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transformation that accomplishes this is presented in Ref . 8

and written here as

where the AO>JI, are the incremental rotations . Similar

transformations must be carried out for the surface tractions,

body forces, and initial strains.

We will, at this point, mention that the last two terms

of Eq. (5) need not be neglected and can be included without

the formation of any additional stiffness matrices besides

the required initial stress stiffness matrix and initial-

strain stiffness matrix. These terms may be retained in a

predictor process in which values for AQ. . and AT] . . ob-

tained from the previous step (appropriately extrapolated)

are used in the formulation of the appropriate stiffness

matrices for the next incremental step. This should permit

the use of larger step sizes in the current formulation. This

latter concept was not used to obtain the results presented

here.

III. Final Matrix Equations and Solution Procedures

The final form of the incremental equations used in the

finite -element formulation is obtained from Eq. (6). The

12



displacements (Au}, linear total strains [Ae..}, and

rotations fAcjo..) are related to the nodal generalized dis

placements (Au.) via the following matrix relations:

We then have

where

[Au]

dv

dv

[N]TfAT(0)}dS

(10)

(11)

fAQ,) [W]T[E]{AeP}dV

V

13



[N]T (T(0)}dS - [W]T[S44}dVij
JS

and body force terms have been neglected, since they are not

considered in this paper. Here [k^ '] is the conventional

stiffness matrix, [k^ '] is the "initial stress" or geo-

metric stiffness matrix, (AP.) is the vector of applied

loads, (AQ } is the effective plastic load vector, and

{R.} is the vector of residual forces due to the existence

of any equilibrium imbalance that may exist because of the

predictor nature of the numerical solution procedure.

The specific forms of the matrices used in the present

analysis for the shell element are presented in the Appendix,

For the small-deflection analysis the procedure followed is

to calculate the value of the load at which plastic deforma-

tion first occurs and is based upon an elastic analysis and

application of a yield criterion. From this point, the load

is then incremented to a maximum value, with new increments

of displacement, plastic strain, and stress calculated at

each step and total values obtained by summing incremental

values. The plastic strain increments used in the plastic

load vector are those calculated from the previous step.

Since this is a small-deflection analysis, the stiffness

14



matrix need never be reformed. The residual force vector was

not used in any of the small-deflection problems. At the

maximum load, a new critical load for which yielding begins

in the reverse direction is calculated, based upon elastic

unloading to this point. Procedures for determining this

load are presented in Refs. 20,21. This critical load may

occur before all the load is removed from the structure be-

cause of the presence of residual stress and the existence

of the Bauschinger effect. At this new critical value, the

load is then incremented to the new specified maximum (mini-

mum) value, and then this procedure is repeated for as many

half cycles as desired.

For the large-deflection elastic-plastic analysis, the

load is applied in small increments from the initial unloaded

state. At the end of each increment, new increments of de-

flection, stress, strain, and plastic strain are calculated.

Total quantities, such as the initial stresses S.., are cal-

culated by using appropriate transformations, and the geometry

of the structure is updated. Again the plastic strain incre-

ments used are those calculated in the previous step. The

total stiffness matrix is reformed at every increment, to-

gether with the incremental load vector, plastic load vector,

15



and residual load vector. The element contributions are

then assembled and the system of linear incremental equa-

tions is again solved and the process repeated until the

maximum specified load is reached or structural failure oc-

curs. If the response to cyclic loads is desired, the load

increment is reversed at the maximum load, and the incre-

mental process is repeated until the new maximum (minimum)

load is reached. This procedure is then repeated for as

many load cycles as desired.

For the large-deflection problem the most time-consuming

feature is the reassembly of the stiffness matrix and solu-

tion of the linear incremental equations. It becomes con-

venient, therefore, to consider the possibility of treating

the large-deflection terms as well as the plasticity effects

as effective loads. This may be done by rewriting Eq. (11)

as

[k(0)]tAUi} = -[k
(1)KAUi} + [AP.J + fAQ,.} + CR^, (12)

where now the product of the initial-stress stiffness matrix

and the vector of displacement increments of the previous

step is treated as an "effective geometric load." The stiff-

ness matrix [k^ '] may be re-formed every M steps (M > 1),

16



with the possibility of saving a considerable amount of time.

However, it is conjectured that the use of this solution pro-

cedure may lead to numerical instabilities, although none

were observed in the limited number of problems solved by

the authors. The use of the geometric terms as effective

loads is not new, and has been used in many Lagrangian formu-

lations with great success [22].

IV. Plasticity Relations

Appropriate plasticity relations to determine values of

stress and plastic strain developed during each increment are

now considered. Hill's yield criterion [23] for an ortho-

tropic material, which reduces to the Von Mises yield condi-

tion for isotropic materials, is used to predict initial yield

and to obtain the flow rules of plasticity. The capability of

handling both strain hardening and ideally plastic behavior is

included in the analysis. While orthotropic behavior is in-

cluded in the case of ideal plasticity, only isotropic be-

havior is now allowed when the material strain hardens. There

are several theories to treat the plastic behavior of strain

hardening orthotropic materials, but the acceptance of a

suitable one awaits further experimental verification.

We may write the increment of total strain as the sum of

elastic and plastic strain increments:

17



{Ae} = {Ae6} + (A€P) . (13)

The increment of elastic strain is related to the increment

of stress through the matrix [E] ,

[Aee} = [E] AfAa} . (14)

For an elastic strain hardening material the plastic strain

increments may be linearly related to the stress increments

through a matrix [C], as follows

{AeP} = [C]{Aa} . (15)

The elements of this matrix are determined by choosing

an appropriate hardening theory. The kinematic hardening

theory is used for all problems presented in this paper. The

elements of the matrix [C] for plane stress, obtained by

using Drucker's postulate [24] in conjunction with the Prager-

Ziegler kinematic hardening theory [12,13], are presented in

Refs. 20 and 21. Both linear and nonlinear hardening behavior

can be represented. For the nonlinear behavior, a Ramberg-

Osgood representation [25] of the stress-strain law is employed,

f~* Q

Using the expressions for {Ac } and [Ae ) in Eqs. (14)

and (15) leads to the desired relationship between increments

of stress and total strain,

fAa) = [R]"1fA€) (16)

18



where

[R] = [E]"1 + [C] .

To obtain {Ac}, the linear relationship between strains

and displacements may be used [15].

Relationships similar to Eq. (16) are available, relating

plastic strain increments and stress increments to total

strain increments for elastic-ideally plastic behavior. They

are presented in Refs. 20 and 21, where the conditions that

must be satisfied for ideally plastic behavior are:

• the stress increment vector must be tangential

to the loading surface during continued plastic

flow, and

• the strain increment vector must remain normal

to the loading surface.

V. Experimental Verification

Background

After developing an analytic method to treat the non-

linear behavior of structural components, comparisons must

be made with existing test data to determine the accuracy

of the predictions and thereby verify that the theoretical

basis of the analysis is valid. For this purpose, a few

tests are usually sufficient for each major type of structure

19



or material behavior, but these tests should be sufficiently

detailed to provide data on the distribution of strain com-

ponents as well as deflections. This is because the deflec-

tions reflect the behavior of all points in the structure

through a weighted integration, and the transverse motion of

any local point is therefore a somewhat gross measure of the

structural response. The local strains, however, are much

more dependent on purely local behavior, and thus the examina-

tion of the strain distribution over the structure can provide

more information on the variation of the structural behavior

from point to point.

While there has been a moderate amount of test data re-

ported to verify various elastic-plastic analysis methods

[10,11, and 26 through 42], most reports show only deflec-

tions and do not report strain distributions. The notable

exceptions are the tests by Ohashi and Murakami [27,28],

Ohashi and Kawashima [10], and May [27] for the moderate

thickness range of mild steel plates. Some earlier documents

[30,31] by Ramberg, McPherson, and Levy reported strain data

on very thin flat plates of large diameter-to-thickness

ratios (D/h greater than 50), for which membrane behavior

dominated. Of additional interest are the tests on shallow

conical shells reported by Gerstle et al. [32], and the flow

20



patterns reported by Lance and Onat [33]. Recently, Wang

and Roberts [42] have reported deformations and strains for

centrally loaded spherical aluminum domes during symmetric

plastic buckling.

The reports of data from cyclic tests are few. In-

terestingly, the early works by Ramberg et al. were on very

thin aluminum plates under multiple cycles of loading in

only one direction (loading and unloading with no reversals),

with increasing peak loads, in which they reported residual

deflections after each cycle. Haythornthwaite and Onat [11]

tested a moderately thick (D/h = 40) mild steel plate, and

presented central deflection versus load data for two fully

reversed loading cycles with large peak deflections (up to

3 times the thickness). Ohashi and Kawashima [10] reported

a test on a thick mild steel plate (D/h = 20) in which they

measured the residual deflections and strains after a single

cycle of loading in one direction for comparison with their

theoretical prediction.

In summary, the existing test data available in the

literature are inadequate for the purpose of verifying the

theoretical work covering the behavior of plates of strain-

hardening material in bending with large deflections, under

monotonic or cyclic loads. Most of the literature is

21



concerned with mild steel, which allows the use of elastic-

perfectly plastic analyses, except for Refs. 30 and 31, con-

cerned with membrane behavior, and Ref. 42, concerned with

buckling.

To verify the results of the present analysis, a small

test program was performed on flat circular 2024-0 aluminum

alloy plates with D/h "20.0 and 40.6. The measured data

were in the form of transverse deflections and radial and

circumferential strain distributions on the upper and lower

surfaces. Bending and membrane strains were calculated from

the measured surface strains. These tests were specifically

designed to provide the desired information to compare with

the theoretical predictions, in that the material chosen had

a low elastic limit stress and pronounced strain hardening

behavior in the plastic range. Furthermore, a concentrated

central loading was chosen because it would produce large

strain gradients over the plate as compared with a distrib-

uted load, and would therefore provide a more stringent

check on the analysis.

Procedure

Tests were performed on two simply supported flat plates

of 2024-0 aluminum alloy, loaded by a hardened steel central

22



rod, as shown in Fig. 1. Both plates were 5.35 in. in

diameter and had thickness of 0.1286 and 0.2615 in., while

the supported diameter was 5.22 in. The loading was pro-

vided by an Instron 20,000 Ib controlled deformation-rate

testing machine, which also measured the load and the dis-

placement of the loading rod. Transverse deflections were

measured at points along a radial line, nominally at 0,1,

and 2 inches from the center, by three LVDT (linearly vary-

ing differential transformer) transducers. Strains were mea-

sured along another radial line at five points, nominally at

0, -|, 1, If, 2| in. from the center. Circumferential and

radial strains were measured by strain gauges on both faces,

except at the center, where only the face opposite the load-

ing rod was instrumented. Over-all symmetry of behavior was

checked by additional strain measurements at 120° intervals

around the circumference at the 1-inch radius. The 21

strain gauges were of the bonded foil type (BLH Electronics,

types FAET-12D-12S13ET and FAE-12S-12S13ET lot A-271)of f-in.

sensing length using epoxy adhesive (Micro-Measurements type

M-Bond GA-2) cured 1 hour at 150°F.

The tests were conducted by moving the loading rod down-

ward against the plate at a constant nominal rate of 0.20 in./

min, while the load, strains, and deflections were continuously

23



recorded. Since the quantity of data taken during a single

test was quite large, the data reduction was performed by a

time-shared digital computer with specially developed pro-

grams to transform the raw data into the desired form and

providing rapid data selection for parametric studies. A

cathode-ray-tube computer-graphics remote terminal, connected

to the time-shared computer, was used for rapid curve plot-

ting. Bending and membrane strains were calculated from the

measured upper and lower surface strains.

Proper comparison of theory with data requires that ac-

curate material properties data be entered into the analysis.

These material properties, in the form of true stress-strain

curves, were measured by means of extensive coupon tests on

the same plate stock from which the circular plate specimens

were cut. These coupons were taken from regions immediately

adjacent to the plate specimens, and were oriented both paral-

lel and transverse to the plate rolling axis. Extensive check-

out o£ the strain-gauge performance was made to insure that

the plastic strain data from the plates would be accurate.

Each of the tension coupons had two sets of bonded strain

gauges of the same type and lot as those used in the plate

tests, as well as a 1-in. clip-on extensometer for compari-

son. The foil strain-gauges had accuracies of better than

24



±5 percent up to 3^ percent strains, when checked against

the clip-on extensometer. The averaged stress-strain curves

for the 0.1286 and 0.2615 plate material are shown in

Figs. 2a and 2b, along with faired curves for three-parameter

(Ramberg-Osgood) formulas which were used in the theoretical

analysis. Most data were for tension coupons, but a few tests

for compression data showed stress-strain curves of nearly

the same shape as for tension. The low elastic limit (about

5,000 psi stress and 0.0005 strain) of the material used

was an aid in the plate tests, in that plasticity was de-

veloped at low strain levels, thereby increasing the useful-

ness of the strain gauges. These coupon data showed that the

plate material was essentially isotropic and homogeneous.
t

VI. Theoretical Results and Comparison of

Theoretical and Experimental Data

Plastic Analysis

To demonstrate the accuracy of the analysis for mono-

tonic loading conditions, application of the plastic analysis

alone was made to several sample structures. In addition,

the behavior of these structures was investigated when they

are subjected to one full cycle of loading in which the load

is fully reversed. In Fig. 3 the load versus apex deflection

25



for a torispherical shell under uniform internal pressure is

presented for various load increments, and a comparison is

made with the results obtained by Khojasteh-Bakht [4].

Elastic-perfectly plastic behavior was assumed. The mate-

rial properties presented in Ref. 4 were used. Khojasteh-

Bakht's results were obtained by using load increments of

1.5 psi. These results are virtually identical with those

of the present analysis, where a load increment of 0.4 psi

was used. As seen in the figure, halving this load increment

produces a significant change in the results only at a load

above the theoretical collapse load predicted by limit analy-

sis [43]. The use of the initial strain method, wherein the

plastic behavior is accounted for by an "effective plastic

load" vector, requires smaller load increments than a tangent

modulus method [21]. However, increment size alone is not

the sole criterion governing the efficiency of one method ver-

sus another. The increase in computing time associated with

the use of smaller increments in the initial strain method is

offset by the fact that the stiffness matrix need never be re-

formed after the first step. Additional evidence that indi-

cates that the initial strain procedure is competitive from

the standpoint of computer time requirements is presented in

Ref. 44.
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Figure 4 shows the load versus apex deflection curve for

the same shell for one full cycle of loading. The load is

varied between amplitudes of ±80 psi and back to zero. It

is interesting to note that the deflections, moments, etc.,

obtained by unloading from the maximum load and subsequent

loading to -80 psi are virtually the same as those that

would be obtained simply by loading monotonically to -80 psi

from the initial state. It is conjectured that this occurs

as a combined result of assuming elastic-perfectly plastic

behavior, neglecting the effects of geometric nonlinearity,

and the fact that the same material properties were assumed

to exist in reversed loading. Moreover, the values of re-

sidual stress, strain, and deflection obtained at the end of

one full cycle are virtually the negatives of those values

obtained by unloading to zero load from the maximum load.

To investigate the generality of these results, a dif-

ferent structure, a simply supported circular plate subjected

to a uniform pressure applied centrally over a circular area

with radius 0.0718 of the plate radius, was cycled through

various load ranges. Again, elastic-perfectly plastic behavior

was considered. The material properties assumed were E =

10.5 x 106 psi, v m 0.33, 0 = 4000 psi. The radius of the

plate was 2.61 in. and the thickness was 0.2615 in. The
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load ranges considered were ±2000, ±3000, ±3500, and

±4000 psi. The results are presented in Fig. 5. In all

cases except the last, the displacements, moments, etc., at

the maximum negative load obtained by unloading from the

maximum positive load are the same as would be obtained

merely by loading monotonically to the maximum negative load

from the virgin state. For the last case (±4000 psi load

range) the load increments used during reversed loading are

too large from the standpoint of accuracy, and consequently

the plastic strains computed are smaller than those that

actually occur (4000 psi is near the theoretical collapse

load of 4280 psi for this structure). These cases tend

to corroborate the hypothesis that for elastic-ideally

plastic materials one need only consider one-half cycle of

loading to obtain information concerning full cycle behavior

when the effects of geometric nonlinearity are ignored.

A strain hardening problem is considered next. A uni-

formly loaded clamped circular plate was cycled between

±560 psi. The same problem was considered for monotonic

loading up to 560 psi by Popov et al. [45], and the re-

sults for this range are compared. Excellent agreement up

to the maximum load was achieved (see Fig. 6). The dis-

crepancies at this load may be attributed to the use of
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different plasticity theories (kinematic versus isotropic

hardening) and the difficulty in reproducing the stress-

strain data from Ref. 45. Furthermore, the load-deflection

curve does exhibit all of the characteristics of strain

hardening behavior. The absolute magnitude of the center

deflection at the maximum negative load is larger than that

developed at the maximum positive load, and the full cycle

residual deflections are triple those of the half cycle.

Results for a uniformly loaded shallow spherical shell

with a stiffened circular hole at the apex are presented

next. This problem demonstrates the beneficial effects of

a stiffening ring on the elastic-plastic behavior of a shell,

although for this particular problem it is seen that large -

deflection terms are also important and should be included.

The pertinent geometric and material parameters defining the

problem are shown in Figs. 7 and 8. The ratio of the hole

radius to shell base plane radius (b/a) is 0.1, and

elastic perfectly-plastic material behavior was assumed

for the shell.

Figure 7a shows the normal displacement versus the ap-

plied pressure at the ring hole interface and at an interior

point approximately halfway between the hole and outer edge

boundary (r = 2.5) for an unstiffened hole and one with a
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stiff ring. As seen from Fig. 7 a there is a substantial

difference between the displacement at the hole boundary for

the case of an unstiffened and for that of a stiffened hole.

In fact, at the collapse load the displacement for the stif-

fened hole changes sign and is in the direction opposite to

that of the applied uniform pressure. In effect, the region

in the vicinity of the hole moves as a rigid body as the dis-

placements in the interior become unbounded. This is due to

the restraining effect of the ring in preventing the hole cir-

cumference from contracting. Since the effect of the hole is

localized, the displacements in the interior (Fig. 7b) for

the stiffened and unstiffened case are indistinguishable. As

indicated, sudden collapse of the shell is evidenced at

qa /Et 2: 15000. This occurs when the entire cross section

in a substantial portion of the interior is plastic for both

cases considered. However, since the ring carries a portion

of the load, there is a wholly elastic section between the

hole boundary and completely plastic interior cross section

at collapse. This contrasts with the unstiffened case, for

which the wholly plastic cross sections begin at the hole

boundary and propagate towards the interior with increasing

load.
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Figures 8a and b show the distribution of circumferen-

tial stress resultant at the yield load and at an intermediate

load in the plastic range. As expected (Fig. 8a), the peak

value for the unstiffened hole is at the hole boundary. As

the region of plasticity expands, this peak value moves to-

ward the interior and is located approximately at the elastic-

plastic boundary. Figure 8b shows results at the same two

loads for the stiffened hole. It can be seen that the stiff

ring substantially reduces the stress resultant at the hole

boundary.

Geometric Nonlinearity

The accuracy of the procedure for geometric nonlinearity

in the case of purely elastic behavior is considered next.

Figures 9 and 10 show a comparison of results obtained from

the present analysis with those obtained by Way [26] for a

clamped, uniformly loaded, elastic circular plate. Poisson's

ratio was chosen to be 0.3. Figure 9 is a plot of central

deflection versus load, and Fig. 10 is a plot of bending and

membrane stresses at the center and edge versus deflection.

For the increment size chosen, excellent agreement was ob-

tained between Way's theoretical and our numerical results.

In the present investigation, results for this problem

were obtained by using both the "tangent modulus" method and

31



the "effective" load method for the same increment size.

For the latter case, the stiffness matrix was re-formed

every five increments. No equilibrium correction term was

included for either method for this problem. The deflec-

tions and bending stresses in both cases were identical,

while slightly smaller membrane stresses were predicted by

the effective load method. Of most significance was the

reduction in CPU time from 386.28 seconds for the tan-

gent modulus method to 202.08 seconds for the effective

load method, and approximately 47 percent time savings

at no appreciable loss in accuracy. Similar time savings

of from 40 to 50 percent were noted for other problems.

Figure 11 illustrates the need for the equilibrium

correction term in problems involving a high degree of non-

linearity. An exact load-deflection curve obtained from

Ref. 22, based upon results presented in Ref. 46, is shown

for an elastic, clamped spherical cap loaded by a central

concentrated load. Also shown are results obtained from the

current analysis using a straight incremental approach with

1/8 Ib increments and an incremental-plus"equilibrium cor-

rection solution using 1 Ib increments. The results ob-

tained in the current analysis are virtually identical (for
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both incremental and incremental-with-equilibrium correction

solutions) to the numerical results given in Ref. 22.

Combined Material and Geometric Nonlinearity

Figure 12 shows a load versus central deflection plot

for a centrally loaded, simply-supported plate with a

diameter-to-thickness ratio of 40.6. The numerical re-

sults are compared with test data obtained from the ex-

perimental program described in Section V. Shown are the

linear elastic, nonlinear elastic, elastic-plastic and com-

bined nonlinear predictions using the tangent modulus ap-

proach with the incremental and incremental-with-equilibrium

correction solution procedures. Although for these combined

problems the equilibrium correction affords a considerable

improvement over the incremental approach, without equilib-

rium correction, a more extensive iteration scheme is prob-

ably needed to close the theoretical-experimental gap. In

Figs. 13 and 14 the radial distribution of circumferential

strain at the lower and upper surfaces, respectively, for

this plate is illustrated for several load levels and com-

pared with theory. Despite the only fair-to-good correla-

tion of the displacement data at high loads, excellent cor-

relation with experiment for the strains is noted, except,
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as might be anticipated, directly under the loading rod for

higher loads. The discrepancy at this point might be the

result of local shear and penetration effects.

The next two figures, Figs. 15 and 16, present load-

deflection and strain data for a thicker plate with a

diameter-to-thickness ratio of 20.0. Figure 15 is a plot

of the deflections at the center and one inch from the center

versus load, and Fig. 16 presents the circumferential strain

distributions at the upper and lower surfaces. Again, the

equilibrium correction leads to much more accurate predic-

tions, and at high loads there is better strain correlation

than deflection correlation.

Wilkinson and Fulton [47] have presented results for

the elasto-plastic buckling of uniformly loaded shallow

spherical caps with both simple and clamped support at the

edges. Several comparison test cases were chosen to verify

their results and determine the present program's ability

to predict buckling loads of such structures. The cases

run were for a = 0.1, fi = 0.002, and A = 4 and 5.5 for

the clamped cap, and A = 4 for the simply supported cap.

Here a is the ratio of tangent modulus to Young's modulus,

P is the ratio of yield stress to Young's modulus, and A
2 £ A

is the geometric shell parameter 2[3(1 - v )] (H/h)2, with
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v being Poisson's ratio, H the maximum shell rise, and h

the shell thickness. As can be seen from Fig. 17, excellent

agreement for these cases was obtained. The buckling pres-

sures were about 3 percent higher than those predicted by

Wilkinson and Fulton. Their results are probably more accu-

rate, since the present analysis makes no attempt to refine

the load increment size in the vicinity of the critical load.

The tangent modulus method was used for the large-deflection

effects.

Results in the form of load versus central deflection

of a simply supported, centrally loaded mild steel circular

plate are shown in Fig. 18. These results involve a history

of loading to a maximum load in the plastic range and then

the removal of the load. A comparison with the experimental

data presented in Ref. 11 indicates that the finite-element

results predict larger displacements than those obtained ex-

perimentally. This may be partially explained by the fact

that no information (except the yield stress) was available

in Ref. 11 concerning the strain hardening properties of the

material used in the experiment. The finite-element analysis

was performed by assuming elastic-ideally plastic behavior,

which is a good representation of the stress-strain behavior
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for mild steel as long as the strains are smaller than about

2 percent. The larger displacement prediction from analysis

is consistent with this assumption. When the strains in the

plate become larger than 2 percent, mild steel experiences

strain hardening. Indeed at loads above 15,000 Ib the

theoretically predicted strains exceed 2 percent in a con-

siderable region of the plate, and divergence of the results

occurs. As a consequence of the overprediction of the maxi-

mum displacement, the residual displacement predicted by the

analysis is considerably greater than that experimentally

observed. However, the general shape of the load-deflection

curve upon unloading parallels the experimental curve.

In the next figure, Fig. 19, a simply-supported, cen-

trally-loaded circular plate with the same dimensions and

material properties as the plate used in the experimental

program was loaded through a half cycle to evaluate the

strain hardening cyclic loading feature of the program.

Geometric nonlinearity was included. The load was increased

from zero to 1600 psi, which is well into the plastic

range for this specimen, and back to zero to obtain residual

stresses, strains, and displacements.

No strain hardening experimental data are yet available

for the unloading portion of the load regime. However, the
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1600 psi maximum load (177 Ib total load) is not suffi-

ciently large to introduce appreciable geometric nonlineari-

ties (see Fig. 12). The results have been compared with our

small strain, small-deflection, elasto-plastic results, and

the correlation is seen to be excellent. This correlation

verified that the procedural aspects of the large-deflection

cyclic analysis are correct.

VI. Conclusions

A large-deflection elastic-plastic analysis using an

incremental finite-element approach has been developed to

predict the behavior of shells of revolution under cyclic

loading conditions. Good agreement with both theoretical

and experimental predictions has been obtained for problems

involving monotonic loading. In the case of cyclic loading

with load reversal, limited test data are available for the

unloading and reversed loading segments of the load cycle.

The qualitative agreement in these regions is good, and a

more detailed quantitative evaluation will be made when the

anticipated test data from a planned series of experiments

become available. It is also desirable to incorporate into

the analysis the capability for traversing unstable portions

of the load-deflection curve (e.g., through displacement
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control). This capability is important for predicting post-

buckling behavior and plastically-induced instabilities en-

countered during reversed loading situations [11]. Various

methods for large"deflection elastic' and elasto-plastic

problems have been proposed [48,49]. Adaptation and evalua-

tion of these methods for the combined nonlinear problem is

a desirable, and has recently become an attainable, goal.
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Appendix

Shell Element

The geometry of the element is presented in Fig. 20.

The approach employed is basically an extension of the work

presented by Khojasteh-Bakht [4] to include cubic poly-

nomials in the representation of the meridional displace-

ment. It differs from other similar formulations [50,51]

in that Hermitian instead of Lagrangian interpolation is

used for the meridional displacement. The additional degree

of freedom required at each node, the linear meridional mem-

brane strain, e , ensures compatibility of all membranes

strains. In Refs. 50 and 51, where Lagrangian interpolation

is employed for the meridional displacement, the "inter-

mediate" displacements are statically condensed out, reducing

the over-all size of the stiffness matrix. This leads to

smaller solution times at the expense of accuracy in the mem-

brane strain predictions.

In the element derivation, Sanders' nonlinear shell

theory [52] (modified to include orthotropic shell proper-

ties) for small strains and moderate rotations is used as

the basis of the analysis. Thus we have for the strain-

displacement relations,
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e

(A-l)

where is the distance from the shell middle surface in

the direction normal to the shell. Here e , efl are the
S \J

total strains in the meridional and circumferential direc-

tions, respectively. Furthermore,

o _ du w i 2

(A-2)

-.a = — (u cos cp + w sin 9)y 1C

are the middle surface strains, and the curvatures are given

by

K
ds

(A-3)

cos 9K- = - *• Y
8 r

The meridional rotation x is

dw u
ds " Rn

(A-4)

The stress-strain relations for an orthotropic axisym-

metric body with principal axes in the meridional and cir-

cumferential directions are:
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as'

'e
> •=

c c 'ss sd

. ces cee
'

I e
(A-5)

[E][ee} .

The vector f€ } is the vector of elastic strains. In terms

of Young's modulus E and Poisson's ratio v, the elements

of the material properties matrix [E] are:

'ss l ~ vesvse 'sd 1 - vn v nds s9

'e
(A-6)

'68 1 - V0 v .9s s&

From energy considerations, C Q = CQ . We may represent the

local Cartesian shell displacements u,,u2 as

u
a,

a =

or (A-7)

fu) = [N][u }

where H . (£) and H|. (?) are cubic Hermitian interpola-

tion polynomials, and fu } is the vector of Cartesian

generalized displacements.
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The strain-displacement relations may now be written in

terms of the rectilinear displacements u, tu with the in-

dependent variable changed from arc length s to normalized

chord variable £ (see Fig. 20). The differential relation-

ship between s and £, is

where £ is the element chord length, p is the angle be-

tween the tangent to the substitute curve T| «= T}(£) and the

£ axis, i.e.,

~ = tan p . (A-9)

We obtain the following matrix relations for the linear

strains

{e} - fe£] + £(*} = [[WJ + C[Wb]](uc)

(A-10)

Here {e} is the vector of linear strains and f eT } is theLI

linear contribution to the membrane strains.

The Cartesian displacements and their derivations with

respect to the normalized chord variable £ (see Fig. 20)

may be related to the tangential and normal displacements,

the rotation x» and the linear meridional membrane strain

through the transformation,
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U

cos p -sin P

sin p cos p

0

0

0

0

0

-J tan p

0

0

I

I tan p

<

'u -

w

X

L
lesJ

or (A-H)

[T]{us) .

Using these relationships in Eq. (A-10) and Eq. (A-7), re-

spectively, we obtain

and

fe) = [W]fu } = [W][T]Cu ) - [W]{uo s s

[N][T]{u } = [N]{u }

(A-12)

(A- 13)

The geometry of the curved element, T\ = T)(̂ ), may be

represented by various interpolation polynomials as well.

Cubic and fifth order Hermitian interpolation or third order

Lagrangian interpolation is available in the program. From

Eqs. (A-5) and (A-12), the final form of the element stiff-

ness matrix is [see Eq. (11)]:
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Details of the formulation of the element stiffness matrix,

including the elements of the [W] and [N] matrices, are

presented in Ref. 14, along with a group of sample problems

illustrating the accuracy of the elements for linear elastic

problems.

The consistent load vector for the applied surface trac-

tions is obtained from Eq. (11). The applied pressures are

allowed to vary linearly from node to node, i.e.,

[AT(0)] = fAT}0)}(l - O + {ATJ0)}£ . (A

We then have for the consistent load vector

[N]T(AT(0)}dA .

For the small-strain, moderate-rotation problems con-

sidered here, i.e., for the strain-displacement relations

presented in Eqs. (A-l) through (A-4), the initial-stress

stiffness mtrix may be written as

S [ft]s
Jv

where [ft] is the matrix relating the rotations x to the

nodal degrees of freedom, i.e.,
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fx) - [n](us] (A-17)

Normally, S is assumed to be constant throughout thes

element and is evaluated at the centroid of the element. In

the present analysis, S was assumed to vary linearly from
5

node to node so that nodal values could he used, since stress

computations were carried out at these locations. This leads

to:

[k

or

,,h/2

A d -h/2
(A-18)

N [fl] + Ns. [fi]

where h is the shell thickness.

We must now evaluate the initial-strain matrix (effec-

tive plastic load vector), given by Eq. (11) to be

[W]T[EHAeP}dV . (A-19)

V

We assume that the incremental initial (plastic) strains

vary linearly from node to node, while at the nodes the varia-

tion of the plastic strains through the thickness is arbitrary,

This may be expressed as:
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{Ae
P(0,Q}(l - {AeP(l,Q}<- . (A-20)

Substituting Eq. (A-20) into Eq. (A-19), we get

tAQ.pi

A d

[W]T[E][{A€
P(0,Q)(1 -

-h/2

(AeP(l,C)}ddC dA

or since

' A

m]
T[E]dA

r.h/2

-h/2

-h/2

,]T[E]dA

-h/2

(A-21)

-h/2

The evaluation of the "effective plastic" moments and forces

through the thickness was carried out by using Simpson's rule
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with 11 or 21 integration points. All area integrations

(actually integrations with respect to 4) were performed

by using a Gauss-Legendre integration scheme of sixth order.

Although a sixth order scheme was probably excessive,a con-

vergence study for the stiffness properties showed it always

gave good results.

Thin Ring Stiffener Element

For many structural designs, local stiffeners are needed

for added strength in regions of high stress intensity. To

be able to analyze the effects such stiffeners have on the

development of plastic regions, a ring stiffener element was

included in the analysis. The ring used is identical to the

one proposed by Cohen [53] (except for the fact that it may

be attached with arbitrary eccentricity).
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Fig. 1 A Plate Specimen in Fixture
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FIG. 20 DISPLACEMENTS OF THE MIDDLf SURFACE (SHELL ELEMENT)
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