500 research outputs found
New Measurements of Fine-Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz
We present new measurements of the cosmic microwave background (CMB)
polarization from the final season of the Cosmic Anisotropy Polarization MAPper
(CAPMAP). The data set was obtained in winter 2004-2005 with the 7 m antenna in
Crawford Hill, New Jersey, from 12 W-band (84-100 GHz) and 4 Q-band (36-45 GHz)
correlation polarimeters with 3.3' and 6.5' beamsizes, respectively. After
selection criteria were applied, 956 (939) hours of data survived for analysis
of W-band (Q-band) data. Two independent and complementary pipelines produced
results in excellent agreement with each other. A broad suite of null tests as
well as extensive simulations showed that systematic errors were minimal, and a
comparison of the W-band and Q-band sky maps revealed no contamination from
galactic foregrounds. We report the E-mode and B-mode power spectra in 7 bands
in the range 200 < l < 3000, extending the range of previous measurements to
higher l. The E-mode spectrum, which is detected at 11 sigma significance, is
in agreement with cosmological predictions and with previous work at other
frequencies and angular resolutions. The BB power spectrum provides one of the
best limits to date on B-mode power at 4.8 uK^2 (95% confidence).Comment: 19 pages, 17 figures, 2 tables, submitted to Ap
Protocol design contests
In fields like data mining and natural language processing, design contests have been successfully used to advance the state of the art. Such contests offer an opportunity to bring the excitement and challenges of protocol design---one of the core intellectual elements of research and practice in networked systems---to a broader group of potential contributors, whose ideas may prove important. Moreover, it may lead to an increase in the number of students, especially undergraduates or those learning via online courses, interested in pursuing a career in the field.
We describe the creation of the infrastructure and our experience with a protocol design contest conducted in MIT's graduate Computer Networks class. This contest involved the design and evaluation of a congestion-control protocol for paths traversing cellular wireless networks. One key to the success of a design contest is an unambiguous, measurable objective to compare protocols. In practice, protocol design is the art of trading off conflicting goals with each other, but in this contest, we specified that the goal was to maximize \log(\mbox{throughput}/\mbox{delay}). This goal is a good match for applications such as video streaming or videoconferencing that care about high throughput and low interactive delays.
Some students produced protocols whose performance was better than published protocols tackling similar goals. Furthermore, the convex hull of the set of all student protocols traced out a tradeoff curve in the throughput-delay space, providing useful insights into the entire space of possible protocols. We found that student protocols diverged in performance between the training and testing traces, indicating that some students had overtrained ("overfitted") their protocols to the training trace. Our conclusion is that, if designed properly, such contests could benefit networking research by making new proposals more easily reproducible and amenable to such "gamification," improve networked systems, and provide an avenue for outreach
Building cloud applications for challenged networks
Cloud computing has seen vast advancements and uptake in many parts of the world. However, many of the design patterns and deployment models are not very suitable for locations with challenged networks such as countries with no nearby datacenters. This paper describes the problem and discusses the options available for such locations, focusing specifically on community clouds as a short-term solution. The paper highlights the impact of recent trends in the development of cloud applications and how changing these could better help deployment in challenged networks. The paper also outlines the consequent challenges in bridging different cloud deployments, also known as cross-cloud computing
Demonstration of K-Kbar, B-Bbar, and D-Dbar Transitions with a Pair of Coupled Pendula
A setup of two coupled and damped pendula is used to demonstrate the main
features of transitions beween neutral K, D, B mesons and their respective
antiparticles, including CP violation in K Kbar transitions. The transitions
are described by two-state Schr\"odinger equations. Since the real parts of
their solutions obey the same differential equations as the pendula
coordinates, the pendulum motions can be used to represent the meson
transitions. Video clips of the motions are attached as supplementary material.Comment: 15 pages, 6 figure
Towards optimization-safe systems: analyzing the impact of undefined behavior
This paper studies an emerging class of software bugs called optimization-unstable code: code that is unexpectedly discarded by compiler optimizations due to undefined behavior in the program. Unstable code is present in many systems, including the Linux kernel and the Postgres database. The consequences of unstable code range from incorrect functionality to missing security checks.
To reason about unstable code, this paper proposes a novel model, which views unstable code in terms of optimizations that leverage undefined behavior. Using this model, we introduce a new static checker called Stack that precisely identifies unstable code. Applying Stack to widely used systems has uncovered 160 new bugs that have been confirmed and fixed by developers.United States. Defense Advanced Research Projects Agency (DARPA Clean-slate design of Resilient, Adaptive, Secure Hosts (CRASH) program under contract #N66001-10-2-4089)National Science Foundation (U.S.) (NSF award CNS-1053143
Testing the Standard Model and Schemes for Quark Mass Matrices with CP Asymmetries in B Decays
The values of and , where and
are angles of the unitarity triangle, will be readily measured in a B
factory (and maybe also in hadron colliders). We study the standard model
constraints in the plane. We use the results
from recent analyses of and which take into account
heavy quark symmetry considerations. We find and
most likely \sin (2 \beta) \roughly{>} 0.6, and emphasize the strong
correlations between and . Various schemes
for quark mass matrices allow much smaller areas in the plane. We study the schemes of Fritzsch, of Dimopoulos, Hall and
Raby, and of Giudice, as well as the ``symmetric CKM'' idea, and show how CP
asymmetries in B decays will crucially test each of these schemes.Comment: 11 pages and 4 postscript figures available on request, LaTeX,
WIS-92/52/Jun-PH, LBL-3256
Quantum Interference: From Kaons to Neutrinos (with Quantum Beats in between)
Using the vehicle of resolving an apparent paradox, a discussion of quantum
interference is presented. The understanding of a number of different physical
phenomena can be unified, in this context. These range from the neutral kaon
system to massive neutrinos, not to mention quantum beats, Rydberg wave
packets, and neutron gravity.Comment: 12 pages, LaTeX, 3 figure
Measurement of the Phase Difference Between eta00 and eta+- to a Precision of 1^0
We propose to add an additional regenerator to the E731 spectrometer in the MC beamline to enable us to measure the phase difference between the CP violation parameters {eta}{sub 00} and {eta}{sub +-} to an accuracy of 1{sup o}. Very general considerations indicate that CPT conservation requires the phase difference, {Delta}{phi} = Arg({eta}{sub 00}) - Arg({eta}{sub +-}), to be smaller than one degree. The current experimental value is {Delta}{phi} = (9.4 {+-} 5.1){sup o}
First Season QUIET Observations: Measurements of CMB Polarization Power Spectra at 43 GHz in the Multipole Range 25 <= ell <= 475
The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43GHz and
95GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to
measure the anisotropy in the polarization of the CMB. QUIET primarily targets
the B modes from primordial gravitational waves. The combination of these
frequencies gives sensitivity to foreground contributions from diffuse Galactic
synchrotron radiation. Between 2008 October and 2010 December, >10,000hours of
data were collected, first with the 19-element 43GHz array (3458hours) and then
with the 90-element 95GHz array. Each array observes the same four fields,
selected for low foregrounds, together covering ~1000deg^2. This paper reports
initial results from the 43GHz receiver which has an array sensitivity to CMB
fluctuations of 69uK sqrt(s). The data were extensively studied with a large
suite of null tests before the power spectra, determined with two independent
pipelines, were examined. Analysis choices, including data selection, were
modified until the null tests passed. Cross correlating maps with different
telescope pointings is used to eliminate a bias. This paper reports the EE, BB
and EB power spectra in the multipole range ell=25-475. With the exception of
the lowest multipole bin for one of the fields, where a polarized foreground,
consistent with Galactic synchrotron radiation, is detected with 3sigma
significance, the E-mode spectrum is consistent with the LCDM model, confirming
the only previous detection of the first acoustic peak. The B-mode spectrum is
consistent with zero, leading to a measurement of the tensor-to-scalar ratio of
r=0.35+1.06-0.87. The combination of a new time-stream double-demodulation
technique, Mizuguchi-Dragone optics, natural sky rotation, and frequent
boresight rotation leads to the lowest level of systematic contamination in the
B-mode power so far reported, below the level of r=0.1Comment: 19 pages, 14 figures, higher quality figures are available at
http://quiet.uchicago.edu/results/index.html; Fixed a typo and corrected
statistical error values used as a reference in Figure 14, showing our
systematic uncertainties (unchanged) vs. multipole; Revision to ApJ accepted
version, this paper should be cited as "QUIET Collaboration et al. (2011)
Rare Kaon Decays
The current status of rare kaon decay experiments is reviewed. New limits in
the search for Lepton Flavor Violation are discussed, as are new measurements
of the CKM matrix.Comment: 8 pages, 3 figures, LaTeX, presented at the 3rd International
Conference on B Phyiscs and CP Violation, Taipei December 3-7, 199
- …