119 research outputs found
Expert Opinion on Laparoscopic Surgery for Colorectal Cancer Parallels Evidence from a Cumulative Meta-Analysis of Randomized Controlled Trials
PMID: 22532846 [PubMed - indexed for MEDLINE] PMCID: PMC3332109 Free PMC ArticlePeer reviewedPublisher PD
A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis
Extracellular matrix interactions have essential roles in normal physiology and many pathological processes. Although the importance of extracellular matrix interactions in metastasis is well documented, systematic approaches to identify their roles in distinct stages of tumorigenesis have not been described. Here we report a novel-screening platform capable of measuring phenotypic responses to combinations of extracellular matrix molecules. Using a genetic mouse model of lung adenocarcinoma, we measure the extracellular matrix-dependent adhesion of tumour-derived cells. Hierarchical clustering of the adhesion profiles differentiates metastatic cell lines from primary tumour lines. Furthermore, we uncovered that metastatic cells selectively associate with fibronectin when in combination with galectin-3, galectin-8 or laminin. We show that these molecules correlate with human disease and that their interactions are mediated in part by α3β1 integrin. Thus, our platform allowed us to interrogate interactions between metastatic cells and their microenvironments, and identified extracellular matrix and integrin interactions that could serve as therapeutic targets.National Institutes of Health (U.S.) (Grant K99-CA151968)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service AwardStand Up To Cancer (SU2C/AACR)David H. Koch Institute for Integrative Cancer Research at MIT (CTC Project)Harvard Stem Cell Institute (SG-0046-08-00)National Cancer Center (Postdoctoral Fellowship)National Cancer Institute (U.S.) (U54CA126515)National Cancer Institute (U.S.) (U54CA112967)Howard Hughes Medical InstituteMassachusetts Institute of Technology. Ludwig Center for Molecular Oncolog
Large-scale integration of cancer microarray data identifies a robust common cancer signature
<p>Abstract</p> <p>Background</p> <p>There is a continuing need to develop molecular diagnostic tools which complement histopathologic examination to increase the accuracy of cancer diagnosis. DNA microarrays provide a means for measuring gene expression signatures which can then be used as components of genomic-based diagnostic tests to determine the presence of cancer.</p> <p>Results</p> <p>In this study, we collect and integrate ~ 1500 microarray gene expression profiles from 26 published cancer data sets across 21 major human cancer types. We then apply a statistical method, referred to as the <it>T</it>op-<it>S</it>coring <it>P</it>air of <it>G</it>roups (TSPG) classifier, and a repeated random sampling strategy to the integrated training data sets and identify a common cancer signature consisting of 46 genes. These 46 genes are naturally divided into two distinct groups; those in one group are typically expressed less than those in the other group for cancer tissues. Given a new expression profile, the classifier discriminates cancer from normal tissues by ranking the expression values of the 46 genes in the cancer signature and comparing the average ranks of the two groups. This signature is then validated by applying this decision rule to independent test data.</p> <p>Conclusion</p> <p>By combining the TSPG method and repeated random sampling, a robust common cancer signature has been identified from large-scale microarray data integration. Upon further validation, this signature may be useful as a robust and objective diagnostic test for cancer.</p
Hepatitis C infection: eligibility for antiviral therapies
peer reviewedBackground Current treatments of chronic hepatitis C virus (HCV) are effective, but expensive and susceptible to induce significant side effects. Objectives To evaluate the proportion of HCV patients who are eligible for a treatment. Methods In a database comprising 1726 viraemic HCV patients, the files of 299 patients who presented to the same hepatologist for an initial appointment between 1996 and 2003 were reviewed. Results Patients' characteristics were age 43.1 +/- 15.6 years, 53% male and 92% Caucasian. The main risk factors were transfusion (43%) and drug use (22%). Genotypes were mostly genotype 1 (66%), genotype 3 (12%) and genotype 2 (10%). These characteristics were not different from those of the whole series of 1726 patients. A total of 176 patients (59%) were not treated, the reasons for non-treatment being medical contraindications (34%), non-compliance (25%) and normal transaminases (24%). In addition, 17% of patients declined therapy despite being considered as eligible, mainly due to fear of adverse events. Medical contraindications were psychiatric (27%), age (22%), end-stage liver disease (15%), willingness for pregnancy (13%), cardiac contraindication (7%) and others (16%). Only 123 patients (41%) were treated. A sustained viral response was observed in 41%. The treatment was interrupted in 16% for adverse events. Conclusions The majority of HCV patients are not eligible for treatment. This implies that, with current therapies, only 17% of patients referred for chronic HCV become sustained responders. Some modifications of guidelines could extend the rate of treatment (patients with normal transaminases), but an important barrier remains the patients' and the doctors' fear of adverse events
Generation of Induced Pluripotent Stem Cells from the Prairie Vole
The vast majority of animals mate more or less promiscuously. A few mammals, including humans, utilize more restrained mating strategies that entail a longer term affiliation with a single mating partner. Such pair bonding mating strategies have been resistant to genetic analysis because of a lack of suitable model organisms. Prairie voles are small mouse-like rodents that form enduring pair bonds in the wild as well as in the laboratory, and consequently they have been used widely to study social bonding behavior. The lack of targeted genetic approaches in this species however has restricted the study of the molecular and neural circuit basis of pair bonds. As a first step in rendering the prairie vole amenable to reverse genetics, we have generated induced pluripotent stem cell (IPSC) lines from prairie vole fibroblasts using retroviral transduction of reprogramming factors. These IPSC lines display the cellular and molecular hallmarks of IPSC cells from other organisms, including mice and humans. Moreover, the prairie vole IPSC lines have pluripotent differentiation potential since they can give rise to all three germ layers in tissue culture and in vivo. These IPSC lines can now be used to develop conditions that facilitate homologous recombination and eventually the generation of prairie voles bearing targeted genetic modifications to study the molecular and neural basis of pair bond formation
The quality of research synthesis in surgery: the case of laparoscopic surgery for colorectal cancer
Peer reviewedPublisher PD
Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond.
Cells have a number of mechanisms to maintain protein homeostasis, including proteasome-mediated degradation of ubiquitinated proteins and autophagy, a regulated process of ‘self-eating’ where the contents of entire organelles can be recycled for other uses. The unfolded protein response prevents protein overload in the secretory pathway. In the past decade, it has become clear that these fundamental cellular processes also help contain inflammation though degrading pro-inflammatory protein complexes such as the NLRP3 inflammasome. Signaling pathways such as the UPR can also be co-opted by toll-like receptor and mitochondrial reactive oxygen species signaling to induce inflammatory responses. Mutations that alter key inflammatory proteins, such as NLRP3 or TNFR1, can overcome normal protein homeostasis mechanisms, resulting in autoinflammatory diseases. Conversely, Mendelian defects in the proteasome cause protein accumulation, which can trigger interferon-dependent autoinflammatory disease. In non-Mendelian inflammatory diseases, polymorphisms in genes affecting the UPR or autophagy pathways can contribute to disease, and in diseases not formerly considered inflammatory such as neurodegenerative conditions and type 2 diabetes, there is increasing evidence that cell intrinsic or environmental alterations in protein homeostasis may contribute to pathogenesis
Parkinson's Disease: Basic Pathomechanisms and a Clinical Overview
PD is a common and a debilitating degenerative movement disorder. The number of patients is increasing worldwide and as yet there is no cure for the disease. The majority of existing treatments target motor symptom control. Over the last two decades the impact of the genetic contribution to PD has been appreciated. Significant discoveries have been made, which have advanced our understanding of the pathophysiological and molecular basis of PD. In this chapter we outline current knowledge of the clinical aspects of PD and the basic mechanistic understanding
Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis
Background Rare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic
variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary
arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes.
Methods We did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial
hypertension. These GWAS used data from four international case-control studies across 11744 individuals with
European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and
the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching
genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants
at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and
tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses.
Findings A locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55–2·08], p=5·13×10–
¹⁵) and a second locus in
HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42–1·71],
p=7·65×10–
²⁰) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus
had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25–1·48],
p=1·69×10–
¹²; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene
regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined
haplotype-specific enhancer activity, and CRISPR-mediated inhibition of the enhancer reduced SOX17 expression. The
HLA-DPA1/DPB1 rs2856830 genotype was strongly associated with survival. Median survival from diagnosis in
patients with pulmonary arterial hypertension with the C/C homozygous genotype was double (13·50 years [95% CI
12·07 to >13·50]) that of those with the T/T genotype (6·97 years [6·02–8·05]), despite similar baseline disease severity.
Interpretation This is the first study to report that common genetic variation at loci in an enhancer near SOX17 and in
HLA-DPA1/DPB1 is associated with pulmonary arterial hypertension. Impairment of SOX17 function might be more
common in pulmonary arterial hypertension than suggested by rare mutations in SOX17. Further studies are needed
to confirm the association between HLA typing or rs2856830 genotyping and survival, and to determine whether HLA
typing or rs2856830 genotyping improves risk stratification in clinical practice or trials.
Funding UK NIHR, BHF, UK MRC, Dinosaur Trust, NIH/NHLBI, ERS, EMBO, Wellcome Trust, EU, AHA,
ACClinPharm, Netherlands CVRI, Dutch Heart Foundation, Dutch Federation of UMC, Netherlands OHRD and
RNAS, German DFG, German BMBF, APH Paris, INSERM, Université Paris-Sud, and French ANR
- …