67 research outputs found

    An Integrated Tool for System Analysis of Sample Return Vehicles

    Get PDF
    The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies

    Design of Launch Abort System Thrust Profile and Concept of Operations

    Get PDF
    This paper describes how the Abort Motor thrust profile has been tailored and how optimizing the Concept of Operations on the Launch Abort System (LAS) of the Orion Crew Exploration Vehicle (CEV) aides in getting the crew safely away from a failed Crew Launch Vehicle (CLV). Unlike the passive nature of the Apollo system, the Orion Launch Abort Vehicle will be actively controlled, giving the program a more robust abort system with a higher probability of crew survival for an abort at all points throughout the CLV trajectory. By optimizing the concept of operations and thrust profile the Orion program will be able to take full advantage of the active Orion LAS. Discussion will involve an overview of the development of the abort motor thrust profile and the current abort concept of operations as well as their effects on the performance of LAS aborts. Pad Abort (for performance) and Maximum Drag (for separation from the Launch Vehicle) are the two points that dictate the required thrust and shape of the thrust profile. The results in this paper show that 95% success of all performance requirements is not currently met for Pad Abort. Future improvements to the current parachute sequence and other potential changes will mitigate the current problems, and meet abort performance requirements

    Space Launch System Booster Separation Supersonic Powered Testing with Surface and Off-Body Measurements

    Get PDF
    A wind tunnel test was run in the NASA Langley Unitary Plan Wind Tunnel simulating the separation of the two solid rocket boosters (SRB) from the core stage of the NASA Space Launch System (SLS). The test was run on a 0.9% scale model of the SLS Block 1B Cargo (27005) configuration and the SLS Block 1B Crew (28005) configuration at a Mach of 4.0. High pressure air was used to simulate plumes from the booster separation motors located at the nose and aft skirt of the two boosters. Force and moment data were taken on both SRBs and on the core stage. Schlieren still photos and video were recorded throughout testing. A set of points were acquired using Cross-correlation Doppler Global Velocimetry (CCDGV) readings to get 3 component velocity measurements between the core and the left-hand SRB. The CCDGV laser was utilized to record flow visualization in the same location, between the core and the left-hand SRB. Pressure Sensitive Paint data were taken on a separate set of runs. Computational Fluid Dynamics (CFD) runs were computed on a subset of the wind tunnel data points for comparison. A combination of the force/moment, CCDGV and Pressure Sensitive Paint (PSP) data (as well as schlieren images) at the CFD-specified test conditions will be used te the CFD simulations that will be used to build an SLS booster separation database flight conditions

    Mars Science Laboratory Entry Guidance Improvements for Mars 2018 (DRAFT)

    Get PDF
    In 2011, the Mars Science Laboratory (MSL) will be launched in a mission to deliver the largest and most capable rover to date to the surface of Mars. A follow on MSL-derived mission, referred to as Mars 2018, is planned for 2018. Mars 2018 goals include performance enhancements of the Entry, Descent and Landing over that of its predecessor MSL mission of 2011. This paper will discuss the main elements of the modified 2018 EDL preliminary design that will increase performance on the entry phase of the mission. In particular, these elements will increase the parachute deploy altitude to allow for more time margin during the subsequent descent and landing phases and reduce the delivery ellipse size at parachute deploy through modifications in the entry reference trajectory design, guidance trigger logic design, and the effect of additional navigation hardware

    Centennial-scale variability of the Southern Hemisphere westerly wind belt in the eastern Pacific over the past two millennia

    Get PDF
    We present the first high-resolution (sub-annual) dust particle data set from West Antarctica, developed from the West Antarctic Ice Sheet (WAIS) Divide deep ice core (79.468° S, 112.086° W), and use it to reconstruct changes in atmospheric circulation over the past 2400 years. We find a background dust flux of ~4 mg m−2 year−1 and a mode particle size of 5–8 μm diameter. Through comparing the WAIS Divide record with other Antarctic ice core particle records, we observe that coastal and lower-elevation sites have higher dust fluxes and coarser particle size distributions (PSDs) than sites on the East Antarctic plateau, suggesting input from local dust sources at these lower-elevation sites. In order to explore the use of the WAIS Divide dust PSD as a proxy for past atmospheric circulation, we make quantitative comparisons between both mid-latitude zonal wind speed and West Antarctic meridional wind speed and the dust size record, finding significant positive interannual relationships. We find that the dust PSD is related to mid-latitude zonal wind speed via cyclonic activity in the Amundsen Sea region. Using our PSD record, and through comparison with spatially distributed climate reconstructions from the Southern Hemisphere (SH) middle and high latitudes, we infer that the SH westerlies occupied a more southerly position from circa 1050 to 1400 CE (Common Era), coinciding with the Medieval Climate Anomaly (MCA). Subsequently, at ca. 1430 CE, the wind belt shifted equatorward, where it remained until the mid-to-late twentieth century. We find covariability between reconstructions of El Niño–Southern Oscillation (ENSO) and the mid-latitude westerly winds in the eastern Pacific, suggesting that centennial-scale circulation changes in this region are strongly influenced by the tropical Pacific. Further, we observe increased coarse particle deposition over the past 50 years, consistent with observations that the SH westerlies have been shifting southward and intensifying in recent decades

    Proteoglycan 4 modulates osteogenic smooth muscle cell differentiation during vascular remodeling and intimal calcification

    Get PDF
    Calcification is a prominent feature of late-stage atherosclerosis, but the mechanisms driving this process are unclear. Using a biobank of carotid endarterectomies, we recently showed that Proteoglycan 4 (PRG4) is a key molecular signature of calcified plaques, expressed in smooth muscle cell (SMC) rich regions. Here, we aimed to unravel the PRG4 role in vascular remodeling and intimal calcification. PRG4 expression in human carotid endarterectomies correlated with calcification assessed by preoperative computed tomographies. PRG4 localized to SMCs in early intimal thickening, while in advanced lesions it was found in the extracellular matrix, surrounding macro-calcifications. In experimental models, Prg4 was upregulated in SMCs from partially ligated ApoE(-/-) mice and rat carotid intimal hyperplasia, correlating with osteogenic markers and TGFb1. Furthermore, PRG4 was enriched in cells positive for chondrogenic marker SOX9 and around plaque calcifications in ApoE(-/-) mice on warfarin. In vitro, PRG4 was induced in SMCs by IFNg, TGFb1 and calcifying medium, while SMC markers were repressed under calcifying conditions. Silencing experiments showed that PRG4 expression was driven by transcription factors SMAD3 and SOX9. Functionally, the addition of recombinant human PRG4 increased ectopic SMC calcification, while arresting cell migration and proliferation. Mechanistically, it suppressed endogenous PRG4, SMAD3 and SOX9, and restored SMC markers' expression. PRG4 modulates SMC function and osteogenic phenotype during intimal remodeling and macro-calcification in response to TGFb1 signaling, SMAD3 and SOX9 activation. The effects of PRG4 on SMC phenotype and calcification suggest its role in atherosclerotic plaque stability, warranting further investigations.Vascular Surger

    Ice core chemistry database: an Antarctic compilation of sodium and sulfate records spanning the past 2000 years

    Get PDF
    Changes in sea ice conditions and atmospheric circulation over the Southern Ocean play an important role in modulating Antarctic climate. However, observations of both sea ice and wind conditions are limited in Antarctica and the Southern Ocean, both temporally and spatially, prior to the satellite era (1970 onwards). Ice core chemistry data can be used to reconstruct changes over annual, decadal, and millennial timescales. To facilitate sea ice and wind reconstructions, the CLIVASH2k (CLimate Variability in Antarctica and the Southern Hemisphere over the past 2000 years) working group has compiled a database of two species, sodium [Na+] and sulfate [SO2− 4 ], commonly measured ionic species. The database (https://doi.org/10.5285/9E0ED16E-F2AB4372-8DF3-FDE7E388C9A7; Thomas et al., 2022) comprises records from 105 Antarctic ice cores, containing records with a maximum age duration of 2000 years. An initial filter has been applied, based on evaluation against sea ice concentration, geopotential height (500 hPa), and surface wind fields to identify sites suitable for reconstructing past sea ice conditions, wind strength, or atmospheric circulation
    corecore