102 research outputs found

    Grain-size distribution dataset of supercritical flow sediments from a Gilbert-type delta that are associated with disaggregation bands

    Get PDF
    This is a dataset of grain-size distribution in sub- and supercritical flow sediments of a Gilbert-type delta from an outcrop in North Germany. Thirteen samples of ca 2.5 kg were dried (at 105°C), and homogenised twice with a sample divider. A representative sample of 1-2 g was then analysed using laser diffraction. The grain-size distribution of the sand has a maximum between fine to medium sand, with a long fine fraction tail down to 0.06 µm and occasional coarse fractions (up to 1.5 mm) in some samples. Specific grain-size distributions correlate with the different sedimentary bedforms from which the samples were taken. This data is important for two reasons: Firstly, sedimentary structures formed by Froude supercritical flows are controlled by grain-size. However, few studies have provided grain-size datasets from the natural record, which often have a much wider grain-size distribution than experimentally-produced supercritical flow deposits. Secondly, the sands were deformed subsequently by disaggregation bands, a type of geological fault that only develops in porous granular materials, i.e. well-sorted, medium sand. The disaggregation bands are indicative of seismic or even aseismic, creeping movement of basement faults

    Response of deep-water fore-arc systems to sea-level changes, tectonic activity and volcaniclastic input in Central America

    Get PDF
    The incipient island-arc system of southern Central America (Cretaceous - early Oligocene) is characterized by thick turbidite systems, which mainly filled inner fore-arc troughs. Outcrop data show four second-order depositional sequences in the deep-water sediments. The formation of these depositional sequences is strongly related to the morphotectonic evolution of the island-arc system. Each depositional sequence reflects the complex interaction between global sea-level fluctuations, sediment supply and tectonic activity. Strong marginal uplift and high volcaniclastic sediment supply during early to late Paleocene and late Eocene times caused the formation of coarse-grained channel-lobe systems. During late Paleocene and mid-Eocene times, fine-grained, thin-bedded turbidite systems were deposited, owing to regional subsidence and a decrease in volcanic supply. Uplift and subsidence of sediment-source areas acted as major controls on deposition of basinal cycles

    Using an OPEN UMS format for document flow formalization in medicine

    Get PDF
    The question about construction of medical documents by means of AURRORA MIS with the use of the Open UMS format is considered in the work. The approach suggested allows data storage in the electronic form suitable for generation of required statistical reports and different researches and preserves a possibility of correct data interpretation

    Impact of Middle Pleistocene (Saalian) glacial lake-outburst floods on the meltwater-drainage pathways in northern central Europe: Insights from 2D numerical flood simulation

    Get PDF
    The terrestrial margins of the Middle Pleistocene ice sheets in northern central Europe were characterised by the formation of extensive ice-dammed lakes, which were controlled by the blockage of spillways by the ice margin. The largest ice-dammed lake had a volume of ∼224 km³ and formed in a late stage of the first Saalian ice advance (MIS 6) in central Germany. The failure of the ice dam in the bedrock-outlet channel triggered a major glacial lake-outburst flood. Flood-related erosional and depositional features include large-scale scours, trench-like channels, streamlined hills, giant bars and run-up deposits, indicating a wide spreading of the outburst flood in an early stage and the incision of trench-like valleys in a later stage. The incision of large valleys in the proximal flood pathway strongly impacted the regional drainage system by providing an efficient drainage network. The trench-like channels initiated by the lake-outburst flood became a crucial part of the ice-marginal drainage and subsequent fluvial system. The reconstructed outlet hydrographs imply peak discharges of 465,000–673,000 m³s −1 . The numerical simulation indicates flow depths of up to 87 m, flow velocities of up to 7 ms −1 , peaks of the bed-shear stress of 2500 Nm −2 and the inundation of large parts of northwestern Germany and the northern Netherlands. The numerical simulation of the outburst flood was conducted on both the modern digital elevation model and on palaeotopographic models, representing the palaeotopography prior to the outburst flood and during maximum flood-related incision, respectively. Distally, the outburst flood probably followed an east-west trending route through northwestern Germany and the central Netherlands into the ice-dammed lake in the southern North Sea Basin. The added water volume might have led to the overspill and drainage of the proglacial lakes in the central Netherlands and the North Sea Lake in a chain reaction, eventually opening an east-west trending meltwater-drainage pathway along the southwestern margin of the decaying ice sheet. © 2019 The Author

    3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data

    Get PDF
    Bedforms related to supercritical flows are increasingly recognised as important constituents of many depositional environments, but outcrop studies are commonly hampered by long bedform wavelengths and complex three-dimensional geometries. We combined outcrop-based facies analysis with ground-penetrating radar (GPR) surveys to analyse the 3D facies architecture of subaqueous ice-contact fan and glacifluvial delta deposits. The studied sedimentary systems were deposited at the margins of the Middle Pleistocene Scandinavian ice sheets in Northern Germany. Glacifluvial Gilbert-type deltas are characterised by steeply dipping foreset beds, comprising cyclic-step deposits, which alternate with antidune deposits. Deposits of cyclic steps consist of lenticular scours infilled by backset cross-stratified pebbly sand and gravel. The GPR sections show that the scour fills form trains along the delta foresets, which can locally be traced for up to 15 m. Perpendicular and oblique to palaeoflow direction, these deposits appear as troughs with concentric or low-angle cross-stratified infills. Downflow transitions from scour fills into sheet-like low-angle cross-stratified or sinusoidally stratified pebbly sand, deposited by antidunes, are common. Cyclic steps and antidunes were deposited by sustained and surge-type supercritical density flows, which were related to hyperpycnal flows, triggered by major meltwater discharge or slope-failure events. Subaqueous ice-contact fan deposits include deposits of progradational scour fills, isolated hydraulic jumps, antidunes and (humpback) dunes. The gravel-rich fan succession consists of vertical stacks of laterally amalgamated pseudo-sheets, indicating deposition by pulses of waning supercritical flows under high aggradation rates. The GPR sections reveal the large-scale architecture of the sand-rich fan succession, which is characterised by lobe elements with basal erosional surfaces associated with scours filled with backsets related to hydraulic jumps, passing upwards and downflow into deposits of antidunes and (humpback) dunes. The recurrent facies architecture of the lobe elements and their prograding and retrograding stacking pattern are interpreted as related to autogenic flow morphodynamics

    Re-examining models of shallow-water deltas: Insights from tank experiments and field examples

    Get PDF
    Shallow-water deltas remain enigmatic in terms of placing the observed facies within a coherent process-based depositional model. Here we report tank experiments on mouth-bar formation from shallow water pure and stratified jets that, combined with recent flume experiments on bedforms, suggest new interpretations of field observations from shallow-water delta outcrops. Our experiments imply that the height, geometry and bedforms of the mouth bars depend on the jet properties and grain size of the supplied sediment. Pure jets with very coarse-grained sediment formed a high and steep mouth bar that is characterised by steep angle-of-repose cross bedding with related avalanche processes (grain flows) on the lee side. The experiments with stratified jets imply that mouth-bar deposition and growth are dominated by supercritical density flows that evolve from the initial jets on the lee side of the growing mouth bar. In stratified jets with very coarse-grained sediment, deposition on the mouth-bar lee side was both from grain-flow avalanches and density flows. While deposition on the upper lee slope was dominated by grain flows, a concentric field of low relief, asymmetric, downflow-migrating bedforms evolved on the lower slope and beyond the mouth bar. In the stratified jet with medium-grained sediment a very low relief mouth bar formed within a concentric field of low, asymmetric, downflow-migrating bedforms covering the entire lee slope and the area beyond. Many previous field studies show that mouth bars deposited from dense stratified jets (hyperpycnal flows) are characterised by a distinct facies assemblage of coarse-grained cross-stratified or low-angle cross-stratified sandstone passing downslope into finer-grained plane-parallel, or “quasi-parallel” laminated sand and into climbing-ripple cross-laminated sandstone. Comparison to flume and tank experiments suggests that the proximal coarse-grained planar and trough cross-stratified sandstones could represent deposition by supercritical dunes that pass downslope into antidunes, characterised by sinusoidal stratification and/or low-angle cross stratification. The repeated vertical transition between antidune deposits and climbing-ripple cross-laminated sandstone may indicate the superposition of ripples onto antidunes in finer-grained sediments, indicating ripple formation under supercritical flow conditions. Similar bedforms/sedimentary structures have previously been interpreted as hummocky cross-stratification or swaley cross-stratification and attributed to combined flows in storm-dominated settings, which probably in some cases must be revised

    New age constraints for the Saalian glaciation in northern central Europe: Implications for the extent of ice sheets and related proglacial lake systems

    Get PDF
    A comprehensive palaeogeographic reconstruction of ice sheets and related proglacial lake systems for the older Saalian glaciation in northern central Europe is presented, which is based on the integration of palaeo-ice flow data, till provenance, facies analysis, geomorphology and new luminescence ages of ice-marginal deposits. Three major ice advances with different ice-advance directions and source areas are indicated by palaeo-ice flow directions and till provenance. The first ice advance was characterised by a southwards directed ice flow and a dominance of clasts derived from southern Sweden. The second ice advance was initially characterised by an ice flow towards the southwest. Clasts are mainly derived from southern and central Sweden. The latest stage in the study area (third ice advance) was characterised by ice streaming (Hondsrug ice stream) in the west and a re-advance in the east. Clasts of this stage are mainly derived from eastern Fennoscandia. Numerical ages for the first ice advance are sparse, but may indicate a correlation with MIS 8 or early MIS 6. New pIRIR290 luminescence ages of ice-marginal deposits attributed to the second ice advance range from 175 ± 10 to 156 ± 24 ka and correlate with MIS 6. The ice sheets repeatedly blocked the main river-drainage pathways and led to the formation of extensive ice-dammed lakes. The formation of proglacial lakes was mainly controlled by ice-damming of river valleys and major bedrock spillways; therefore the lake levels and extends were very similar throughout the repeated ice advances. During deglaciation the lakes commonly increased in size and eventually drained successively towards the west and northwest into the Lower Rhine Embayment and the North Sea. Catastrophic lake-drainage events occurred when large overspill channels were suddenly opened. Ice-streaming at the end of the older Saalian glaciation was probably triggered by major lake-drainage events

    Jurassic to Lower Cretaceous tectonostratigraphy of the German Central Graben, southern North Sea

    Get PDF
    The Central Graben is a Mesozoic sedimentary basin that is significantly influenced by rift and salt tectonics. Its southern part is located in the German and Dutch sectors of the North Sea. Even though studies exist on the tectonic and stratigraphic development of the Danish and Dutch Central Graben, the German Central Graben as an important link is less investigated. We aim to fill this gap and to investigate the sedimentary development from the Latest Triassic to the Early Cretaceous, the relative influence of salt and rift tectonics on subsidence and how our results fit into the existing studies of the Danish and Dutch Central Graben. Knowledge of the development of the graben and its sedimentation is critical for any possible economic use like hydrocarbon exploitation or carbon capture and storage. Therefore, we mapped nine laterally traceable horizons on 2D and 3D reflection seismic data from the Lower Jurassic to the Lower Cretaceous within the German Central Graben and adjacent Danish Salt Dome Province as well as the northern Dutch Central Graben. These horizons include the base horizons of four tectonostratigraphic mega-sequences of the southern Central Graben adopted from the current Dutch tectonostratigraphic concept. Based on the mapping results, we constructed subsidence, thickness and erosion maps of the tectonostratigraphic mega-sequences and their subdivisions. The tectonostratigraphic mega-sequences were then correlated with well logs to determine the lithology. The results show that the structural and stratigraphic architecture of the German Central Graben was consecutively dominated by either subsidence controlled by rifting, salt tectonics or by thermal uplift and subsidence. We suggest that the German Central Graben is divided by a large strike-slip fault zone, the Mid Central Graben Transverse Zone, into a northern part that geologically rather belongs to the Danish and a southern part that rather belongs to the Dutch Central Graben. We discuss how this division and the tectonics influenced the regional lithology
    corecore