132 research outputs found

    Longitudinal vortices in concave surface boundary layers

    Get PDF
    Imperial Users onl

    Preliminary Test on Cross Axis Type Wind Turbine

    Get PDF
    The dependence on fossil fuel for power generation has a significant negative impact on environmental damage. To reduce the environmental damage, the use of wind energy for power generation needs to be increased and improved. A new type of wind turbine which has been reported recently is a cross axis wind turbine which can be designed for use in high-rise urban buildings where wind condition is more favorable. A model of a cross axis wind turbine which has a rotor diameter of 70 cm and a height of 60 cm has been fabricated and preliminarily tested. The wind turbine model consists of five vertical blades and two horizontal blade arrangements each having five blades. The performance test was carried out at a constant wind speed. During the test, the blade pitch angle was varied from 20 to 60 and wind speed was varied from 5 m/s to 7 m/s. Analysis and evaluation results show that the output power and efficiency of the wind turbine are affected by the blade pitch angle. At wind speed of about 7 m/s, the estimated maximum power is 0.15 W and maximum efficiency of only 0.17% for which the pitch angle was about 60 and tip speed ratio about 0.35

    Distribution of Wind Speed Before and After Through Vane Tube Type Flow Straightener

    Get PDF
    Wind energy is one of the most potential renewable energy sources to be utilized as a source of electrical energy. Utilization of wind energy for electricity generation does not cause negative impact on the environment. Wind in the atmosphere is in turbulent conditions. Wind in turbulent conditions has a random and uniform velocity. In wind power plants wind speed is a major factor affecting the amount of wind energy input that can be converted into electrical anergy. The main part of wind power is wind turbines. This wind turbine converts wind energy into mechanical energy of shaft rotation and then converted into electrical energy by electric generator. To measure wind speed the wind speed conditions are made uniformly by using wind flow alignment. The wind flow straightening test kit consists of flow alignment, fan, pitot tube meter, and pitot tube holder arm rod. Straight stream flow used in this study is the type of vane tube. In this study, the wind speed measurement was taken before and after passing the flow straighteners. Measurements of wind velocity on the cross section of the wind turbine are performed horizontally, vertically and diagonally. The number of wind speed measurements as much as fifty-two points of gravity with the distance between the point of measurement about two centimeters. Based on the results of measurement and analysis, the average wind speed before passing the straightener is about 4.94 m/s and after passing the flow alignment is about 3.22 m/s. The wind velocity distribution after passing through the vane tube flow alignment is more uniform

    Quantum computation with trapped polar molecules

    Full text link
    We propose a novel physical realization of a quantum computer. The qubits are electric dipole moments of ultracold diatomic molecules, oriented along or against an external electric field. Individual molecules are held in a 1-D trap array, with an electric field gradient allowing spectroscopic addressing of each site. Bits are coupled via the electric dipole-dipole interaction. Using technologies similar to those already demonstrated, this design can plausibly lead to a quantum computer with 104\gtrsim 10^4 qubits, which can perform 105\sim 10^5 CNOT gates in the anticipated decoherence time of 5\sim 5 s.Comment: 4 pages, RevTeX 4, 2 figures. Edited for length and converted to RevTeX, but no substantial changes from earlier pdf versio

    The nuclear orphan receptor Nr4a2 induces Foxp3 and regulates differentiation of CD4+ T cells

    Get PDF
    Regulatory T cells (Tregs) have a central role in maintaining immune homoeostasis through various mechanisms. Although the Forkhead transcription factor Foxp3 defines the Treg cell lineage and functions, the molecular mechanisms of Foxp3 induction and maintenance remain elusive. Here we show that Foxp3 is one of the direct targets of Nr4a2. Nr4a2 binds to regulatory regions of Foxp3, where it mediates permissive histone modifications. Ectopic expression of Nr4a2 imparts Treg-like suppressive activity to naïve CD4+ T cells by inducing Foxp3 and by repressing cytokine production, including interferon-γ and interleukin-2. Deletion of Nr4a2 in T cells attenuates induction of Tregs and causes aberrant induction of Th1, leading to the exacerbation of colitis. Nr4a2-deficeint Tregs are prone to lose Foxp3 expression and have attenuated suppressive ability both in vitro and in vivo. Thus, Nr4a2 has the ability to maintain T-cell homoeostasis by regulating induction, maintenance and suppressor functions of Tregs, and by repression of aberrant Th1 induction

    All-Trans Retinoic Acid Promotes TGF-β-Induced Tregs via Histone Modification but Not DNA Demethylation on Foxp3 Gene Locus

    Get PDF
    It has been documented all-trans retinoic acid (atRA) promotes the development of TGF-β-induced CD4(+)Foxp3(+) regulatory T cells (iTreg) that play a vital role in the prevention of autoimmune responses, however, molecular mechanisms involved remain elusive. Our objective, therefore, was to determine how atRA promotes the differentiation of iTregs.Addition of atRA to naïve CD4(+)CD25(-) cells stimulated with anti-CD3/CD28 antibodies in the presence of TGF-β not only increased Foxp3(+) iTreg differentiation, but maintained Foxp3 expression through apoptosis inhibition. atRA/TGF-β-treated CD4(+) cells developed complete anergy and displayed increased suppressive activity. Infusion of atRA/TGF-β-treated CD4(+) cells resulted in the greater effects on suppressing symptoms and protecting the survival of chronic GVHD mice with typical lupus-like syndromes than did CD4(+) cells treated with TGF-β alone. atRA did not significantly affect the phosphorylation levels of Smad2/3 and still promoted iTreg differentiation in CD4(+) cells isolated from Smad3 KO and Smad2 conditional KO mice. Conversely, atRA markedly increased ERK1/2 activation, and blockade of ERK1/2 signaling completely abolished the enhanced effects of atRA on Foxp3 expression. Moreover, atRA significantly increased histone methylation and acetylation within the promoter and conserved non-coding DNA sequence (CNS) elements at the Foxp3 gene locus and the recruitment of phosphor-RNA polymerase II, while DNA methylation in the CNS3 was not significantly altered.We have identified the cellular and molecular mechanism(s) by which atRA promotes the development and maintenance of iTregs. These results will help to enhance the quantity and quality of development of iTregs and may provide novel insights into clinical cell therapy for patients with autoimmune diseases and those needing organ transplantation

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
    corecore