3,239 research outputs found

    Discerning Exoplanet Migration Models Using Spin-Orbit Measurements

    Get PDF
    We investigate the current sample of exoplanet spin-orbit measurements to determine whether a dominant planet migration channel can be identified, and at what confidence. We use the predictions of Kozai migration plus tidal friction (Fabrycky and Tremaine 2007) and planet-planet scattering (Nagasawa et al. 2008) as our misalignment models, and we allow for a fraction of intrinsically aligned systems, explainable by disk migration. Bayesian model comparison demonstrates that the current sample of 32 spin-orbit measurements strongly favors a two-mode migration scenario combining planet-planet scattering and disk migration over a single-mode Kozai migration scenario. Our analysis indicates that between 34% and 76% of close-in planets (95% confidence) migrated via planet-planet scattering. Separately analyzing the subsample of 12 stars with T_eff > 6250 K---which Winn et al. (2010) predict to be the only type of stars to maintain their primordial misalignments---we find that the data favor a single-mode scattering model over Kozai with 81% confidence. We also assess the number of additional hot star spin-orbit measurements that will likely be necessary to provide a more confident model selection, finding that an additional 20-30 measurements has a >50% chance of resulting in a 95%-confident model selection, if the current model selection is correct. While we test only the predictions of particular Kozai and scattering migration models in this work, our methods may be used to test the predictions of any other spin-orbit misaligning mechanism.Comment: 9 pages, 8 figures, ApJ responded to refere

    A Smaller Radius for the Transiting Exoplanet WASP-10b

    Get PDF
    We present photometry of WASP-10 during the transit of its short-period Jovian planet. We employed the novel PSF-shaping capabilities the OPTIC camera mounted on the UH 2.2m telescope to achieve a photometric precision of 4.7e-4 per 1.3 min sample. With this new light curve, in conjunction with stellar evolutionary models, we improve on existing measurements of the planetary, stellar and orbital parameters. We find a stellar radius Rstar = 0.698 +/- 0.012 Rsun and a planetary radius Rp = 1.080 +/- 0.020 Rjup. The quoted errors do not include any possible systematic errors in the stellar evolutionary models. Our measurement improves the precision of the planet's radius by a factor of 4, and revises the previous estimate downward by 16% (2.5sigma, where sigma is the quadrature sum of the respective confidence limits). Our measured radius of WASP-10b is consistent with previously published theoretical radii for irradiated Jovian planets.Comment: 4 pages, 2 tables, 2 figures, table 1 available upon reques

    Spin-Orbit Alignment for the Circumbinary Planet Host Kepler-16 A

    Get PDF
    Kepler-16 is an eccentric low-mass eclipsing binary with a circumbinary transiting planet. Here, we investigate the angular momentum of the primary star, based on Kepler photometry and Keck spectroscopy. The primary star’s rotation period is 35.1 ± 1.0 days, and its projected obliquity with respect to the stellar binary orbit is 1°.6 ± 2°.4. Therefore, the three largest sources of angular momentum—the stellar orbit, the planetary orbit, and the primary’s rotation—are all closely aligned. This finding supports a formation scenario involving accretion from a single disk. Alternatively, tides may have realigned the stars despite their relatively wide separation (0.2 AU), a hypothesis that is supported by the agreement between the measured rotation period and the “pseudosynchronous” period of tidal evolution theory. The rotation period, chromospheric activity level, and fractional light variations suggest a main-sequence age of 2–4 Gyr. Evolutionary models of low-mass stars can match the observed masses and radii of the primary and secondary stars to within about 3%

    The History of the Mysterious Eclipses of KH 15D: Asiago Observatory, 1967-1982

    Get PDF
    We are gathering archival observations to determine the photometric history of the unique and unexplained eclipses of the pre-main-sequence star KH 15D. Here we present a light curve from 1967-1982, based on photographic plates from Asiago Observatory. During this time, the system alternated periodically between bright and faint states, as observed today. However, the bright state was 0.9 mag brighter than the modern value, and the fractional variation between bright and faint states (Delta I = 0.7 mag) was smaller than observed today (3.5 mag). A possible explanation for these findings is that the system contains a second star that was previously blended with the eclipsing star, but is now completely obscured.Comment: Accepted to AJ. 24 pages, 10 figures, 2 tables. v2: Phase error corrected in figures 8 and 1

    Analytic Description of the Rossiter-McLaughlin Effect for Transiting Exoplanets: Cross-Correlation Method and Comparison with Simulated Data

    Get PDF
    We obtain analytical expressions for the velocity anomaly due to the Rossiter- McLaughlin effect, for the case when the anomalous radial velocity is obtained by cross-correlation with a stellar template spectrum. In the limit of vanishing width of the stellar absorption lines, our result reduces to the formula derived by Ohta et al. (2005), which is based on the first moment of distorted stellar lines. Our new formula contains a term dependent on the stellar linewidth, which becomes important when rotational line broadening is appreciable. We generate mock transit spectra for four existing exoplanetary systems (HD17156, TrES-2, TrES- 4, and HD209458) following the procedure of Winn et al. (2005), and find that the new formula is in better agreement with the velocity anomaly extracted from the mock data. Thus, our result provides a more reliable analytical description of the velocity anomaly due to the Rossiter-McLaughlin effect, and explains the previously observed dependence of the velocity anomaly on the stellar rotation velocity.Comment: 31 pages, 9 figures, Astrophysical Journal in pres

    Orbital Orientations of Exoplanets: HAT-P-4b is Prograde and HAT-P-14b is Retrograde

    Get PDF
    We present observations of the Rossiter-McLaughlin effect for two exoplanetary systems, revealing the orientations of their orbits relative to the rotation axes of their parent stars. HAT-P-4b is prograde, with a sky-projected spin-orbit angle of lambda = -4.9 +/- 11.9 degrees. In contrast, HAT-P-14b is retrograde, with lambda = 189.1 +/- 5.1 degrees. These results conform with a previously noted pattern among the stellar hosts of close-in giant planets: hotter stars have a wide range of obliquities and cooler stars have low obliquities. This, in turn, suggests that three-body dynamics and tidal dissipation are responsible for the short-period orbits of many exoplanets. In addition, our data revealed a third body in the HAT-P-4 system, which could be a second planet or a companion star.Comment: AJ, in press [8 pages

    A Prograde, Low-Inclination Orbit for the Very Hot Jupiter WASP-3b

    Get PDF
    We present new spectroscopic and photometric observations of the transiting exoplanetary system WASP-3. Spectra obtained during two separate transits exhibit the Rossiter-McLaughlin (RM) effect and allow us to estimate the sky-projected angle between the planetary orbital axis and the stellar rotation axis, lambda = 3.3^{+2.5}_{-4.4} degrees. This alignment between the axes suggests that WASP-3b has a low orbital inclination relative to the equatorial plane of its parent star. During our first night of spectroscopic measurements, we observed an unexpected redshift briefly exceeding the expected sum of the orbital and RM velocities by 140 m/s. This anomaly could represent the occultation of material erupting from the stellar photosphere, although it is more likely to be an artifact caused by moonlight scattered into the spectrograph.Comment: 23 pages, 4 figures, Accepted for publication in The Astrophysical Journal, Replacement includes revised citation
    corecore