237 research outputs found
Algorithms and Models for Tensors and Networks with Applications in Data Science
Big data plays an increasingly central role in many areas of research including optimization and network modeling. We consider problems applicable to large datasets within these two branches of research. We begin by presenting a nonlinearly preconditioned nonlinear conjugate gradient (PNCG) algorithm to increase the convergence speed of iterative unconstrained optimization methods. We provide a concise overview of several PNCG variants and their properties and obtain a new convergence result for one of the PNCG variants under suitable conditions. We then use the PNCG algorithm to solve two different problems: computing the rank-R canonical tensor decomposition and finding the solution to a latent factor model where latent factor models are often used as important building blocks in many practical recommendation systems. For both problems, the alternating least squares (ALS) algorithm is typically used to find a solution and as such we consider it as a nonlinear preconditioner. Note that the ALS algorithm can be viewed as a nonlinear preconditioner for the NCG algorithm or alternatively, NCG can be viewed as an acceleration process for ALS. We demonstrate numerically that the convergence acceleration mechanism in PNCG often leads to important pay-offs for difficult tensor decomposition problems, with convergence that is significantly faster and more robust than for the stand-alone NCG or ALS algorithms. As well, we show numerically that the PNCG algorithm requires many fewer iterations and less time to reach desired ranking accuracies than stand-alone ALS in solving latent factor models.
We next turn to problems within the field of network or graph modeling. A network is a collection of points joined together by lines and networks are used in a broad variety of fields to represent connections between objects. Many large real-world networks share similar properties which has garnered considerable interest in developing models that can replicate these properties. We begin our discussion of graph models by closely examining the Chung-Lu model. The Chung-Lu model is a very simple model where by design the expected degree sequence of a graph generated by the model is equal to a user-supplied degree sequence. We explore what happens both theoretically and numerically when simple changes are made to the model and when the model assumptions are violated. As well, we consider an algorithm used to generate instances of the Chung-Lu model that is designed to be faster than the traditional algorithm but find that it only generates instances of an approximate Chung-Lu model. We explore the properties of this approximate model under a variety of conditions and examine how different the expected degree sequence is from the user-supplied degree sequence. We also explore several ways of improving this approximate model to reduce the approximation error in the expected degree sequence and note that when the assumptions of the original model are violated this error remains very large. We next design a new graph generator to match the community structure found in real-world networks as measured using the clustering coefficient and assortativity coefficient. Our graph generator uses information generated from a clustering algorithm run on the original network to build a synthetic network. Using several real-world networks, we test our algorithm numerically by creating a synthetic network and then comparing the properties to the real network properties as well as to the properties of another popular graph generator, BTER, developed by Seshadhri, Kolda and Pinar. Our graph generator does well at preserving the clustering coefficient and typically outperforms BTER in matching the assortativity coefficient, particularly when the assortativity coefficient is negative
Recursively accelerated multilevel aggregation for markov chains
Abstract. A recursive acceleration method is proposed for multiplicative multilevel aggregation algorithms that calculate the stationary probability vector of large, sparse, and irreducible Markov chains. Pairs of consecutive iterates at all branches and levels of a multigrid W cycle with simple, nonoverlapping aggregation are recombined to produce improved iterates at those levels. This is achieved by solving quadratic programming problems with inequality constraints: the linear combination of the two iterates is sought that has a minimal two-norm residual, under the constraint that all vector components are nonnegative. It is shown how the two-dimensional quadratic programming problems can be solved explicitly in an efficient way. The method is further enhanced by windowed top-level acceleration of the W cycles using the same constrained quadratic programming approach. Recursive acceleration is an attractive alternative to smoothing the restriction and interpolation operators, since the operator complexity is better controlled and the probabilistic interpretation of coarse-level operators is maintained on all levels. Numerical results are presented showing that the resulting recursively accelerated multilevel aggregation cycles for Markov chains, combined with top-level acceleration, converge significantly faster than W cycles and lead to close-to-linear computational complexity for challenging test problems
Tell me once, tell me soon: parentsā preferences for clinical genetics services for congenital heart disease
Ā© 2018, American College of Medical Genetics and Genomics. Purpose: As the molecular basis of congenital heart disease (CHD) comes into sharper focus, cardiac genetics services are likely to play an increasingly important role. This study aimed to identify parentsā preferences for, and willingness to participate in, clinical genetics services for CHD. Methods: A discrete choice experiment was developed to assess parentsā preferences for pediatric cardiogenetics services based on four attributes: appointment format, health professionals involved, waiting time, and information format. Data were analyzed using a mixed logit model. Results: One hundred parents with a living child diagnosed with CHD requiring surgical intervention between 2000 and 2009 completed the discrete choice experiment. Parents expressed a clear preference for cardiac genetics services featuring (i) a single appointment, (ii) the presence of a clinical geneticist and a genetic counselor, (iii) both verbal (oral) and Web-based information about CHD and genetics, and (iv) availability of an appointment within 2 weeks. If offered such conditions, 93% of respondents indicated that they would attend. The choice of service was most strongly influenced by the presence of both a clinical geneticist and a genetic counselor. Conclusion: Parents of children with CHD favor a single, timely genetics appointment with both a geneticist and a genetic counselor present. If appointments offered match these preferences, uptake is likely to be high
Study protocol: NITric oxide during cardiopulmonary bypass to improve Recovery in Infants with Congenital heart defects (NITRIC trial): a randomised controlled trial
Introduction Congenital heart disease (CHD) is a major cause of infant mortality. Many infants with CHD require corrective surgery with most operations requiring cardiopulmonary bypass (CPB). CPB triggers a systemic inflammatory response which is associated with low cardiac output syndrome (LCOS), postoperative morbidity and mortality. Delivery of nitric oxide (NO) into CPB circuits can provide myocardial protection and reduce bypass-induced inflammation, leading to less LCOS and improved recovery. We hypothesised that using NO during CPB increases ventilator-free days (VFD) (the number of days patients spend alive and free from invasive mechanical ventilation up until day 28) compared with standard care. Here, we describe the NITRIC trial protocol. Methods and analysis The NITRIC trial is a randomised, double-blind, controlled, parallel-group, two-sided superiority trial to be conducted in six paediatric cardiac surgical centres. One thousand three-hundred and twenty infants <2 years of age undergoing cardiac surgery with CPB will be randomly assigned to NO at 20 ppm administered into the CPB oxygenator for the duration of CPB or standard care (no NO) in a 1:1 ratio with stratification by age (<6 and ā„6 weeks), single ventricle physiology (Y/N) and study centre. The primary outcome will be VFD to day 28. Secondary outcomes include a composite of LCOS, need for extracorporeal membrane oxygenation or death within 28 days of surgery; length of stay in intensive care and in hospital; and, healthcare costs. Analyses will be conducted on an intention-to-treat basis. Preplanned secondary analyses will investigate the impact of NO on host inflammatory profiles postsurgery. Ethics and dissemination The study has ethical approval (HREC/17/QRCH/43, dated 26 April 2017), is registered in the Australian New Zealand Clinical Trials Registry (ACTRN12617000821392) and commenced recruitment in July 2017. The primary manuscript will be submitted for publication in a peer-reviewed journal. Trial registration number ACTRN12617000821392.</p
Recommended from our members
Functional characterization of a novel PBX1 de novo missense variant identified in a patient with syndromic congenital heart disease.
Pre-B cell leukemia factor 1 (PBX1) is an essential developmental transcription factor, mutations in which have recently been associated with CAKUTHED syndrome, characterized by multiple congenital defects including congenital heart disease (CHD). During analysis of a whole-exome-sequenced cohort of heterogeneous CHD patients, we identified a de novo missense variant, PBX1:c.551G>C p.R184P, in a patient with tetralogy of Fallot with absent pulmonary valve and extra-cardiac phenotypes. Functional analysis of this variant by creating a CRISPR-Cas9 gene-edited mouse model revealed multiple congenital anomalies. Congenital heart defects (persistent truncus arteriosus and ventricular septal defect), hypoplastic lungs, hypoplastic/ectopic kidneys, aplastic adrenal glands and spleen, as well as atretic trachea and palate defects were observed in the homozygous mutant embryos at multiple stages of development. We also observed developmental anomalies in a proportion of heterozygous embryos, suggestive of a dominant mode of inheritance. Analysis of gene expression and protein levels revealed that although Pbx1 transcripts are higher in homozygotes, amounts of PBX1 protein are significantly decreased. Here, we have presented the first functional model of a missense PBX1 variant and provided strong evidence that p.R184P is disease-causal. Our findings also expand the phenotypic spectrum associated with pathogenic PBX1 variants in both humans and mice
Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls
Recurrent rearrangements of chromosome 1q21.1 that occur via non-allelic homologous recombination have been associated with variable phenotypes exhibiting incomplete penetrance, including congenital heart disease (CHD). However, the gene or genes within the ā¼1 Mb critical region responsible for each of the associated phenotypes remains unknown. We examined the 1q21.1 locus in 948 patients with tetralogy of Fallot (TOF), 1488 patients with other forms of CHD and 6760 ethnically matched controls using single nucleotide polymorphism genotyping arrays (Illumina 660W and Affymetrix 6.0) and multiplex ligation-dependent probe amplification. We found that duplication of 1q21.1 was more common in cases of TOF than in controls [odds ratio (OR) 30.9, 95% confidence interval (CI) 8.9-107.6); P = 2.2 Ć 10ā7], but deletion was not. In contrast, deletion of 1q21.1 was more common in cases of non-TOF CHD than in controls [OR 5.5 (95% CI 1.4-22.0); P = 0.04] while duplication was not. We also detected rare (n = 3) 100-200 kb duplications within the critical region of 1q21.1 in cases of TOF. These small duplications encompassed a single gene in common, GJA5, and were enriched in cases of TOF in comparison to controls [OR = 10.7 (95% CI 1.8-64.3), P = 0.01]. These findings show that duplication and deletion at chromosome 1q21.1 exhibit a degree of phenotypic specificity in CHD, and implicate GJA5 as the gene responsible for the CHD phenotypes observed with copy number imbalances at this locu
Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls
Recurrent rearrangements of chromosome 1q21.1 that occur via non-allelic homologous recombination have been associated with variable phenotypes exhibiting incomplete penetrance, including congenital heart disease (CHD). However, the gene or genes within the ā¼1 Mb critical region responsible for each of the associated phenotypes remains unknown. We examined the 1q21.1 locus in 948 patients with tetralogy of Fallot (TOF), 1488 patients with other forms of CHD and 6760 ethnically matched controls using single nucleotide polymorphism genotyping arrays (Illumina 660W and Affymetrix 6.0) and multiplex ligation-dependent probe amplification. We found that duplication of 1q21.1 was more common in cases of TOF than in controls [odds ratio (OR) 30.9, 95% confidence interval (CI) 8.9ā107.6); P = 2.2 Ć 10ā7], but deletion was not. In contrast, deletion of 1q21.1 was more common in cases of non-TOF CHD than in controls [OR 5.5 (95% CI 1.4ā22.0); P = 0.04] while duplication was not. We also detected rare (n = 3) 100ā200 kb duplications within the critical region of 1q21.1 in cases of TOF. These small duplications encompassed a single gene in common, GJA5, and were enriched in cases of TOF in comparison to controls [OR = 10.7 (95% CI 1.8ā64.3), P = 0.01]. These findings show that duplication and deletion at chromosome 1q21.1 exhibit a degree of phenotypic specificity in CHD, and implicate GJA5 as the gene responsible for the CHD phenotypes observed with copy number imbalances at this locus
Genome-wide association study identifies loci on 12q24 and 13q32 associated with Tetralogy of Fallot
We conducted a genome-wide association study to search for risk alleles associated with Tetralogy of Fallot (TOF), using a northern European discovery set of 835 cases and 5159 controls. A region on chromosome 12q24 was associated (P = 1.4 Ć 10ā7) and replicated convincingly (P = 3.9 Ć 10ā5) in 798 cases and 2931 controls [per allele odds ratio (OR) = 1.27 in replication cohort, P = 7.7 Ć 10ā11 in combined populations]. Single nucleotide polymorphisms in the glypican 5 gene on chromosome 13q32 were also associated (P = 1.7 Ć 10ā7) and replicated convincingly (P = 1.2 Ć 10ā5) in 789 cases and 2927 controls (per allele OR = 1.31 in replication cohort, P = 3.03 Ć 10ā11 in combined populations). Four additional regions on chromosomes 10, 15 and 16 showed suggestive association accompanied by nominal replication. This study, the first genome-wide association study of a congenital heart malformation phenotype, provides evidence that common genetic variation influences the risk of TO
Clinicopathological and prognostic significance of HER-2/neu and VEGF expression in colon carcinomas
<p>Abstract</p> <p>Background</p> <p>HER-2/neu and VEGF expression is correlated with disease behaviors in various cancers. However, evidence for their expression in colon cancer is rather contradictory both for the protein expression status and prognostic value. HER-2/neu is found to participate in VEGF regulation, and has known correlation with VEGF expression in some tumors. In this study, we investigated HER-2/neu and VEGF expression in Chinese colon patients and explored whether there was any correlation between their expression patterns.</p> <p>Methods</p> <p>HER-2/neu and VEGF were investigated immunohistochemically using tumor samples obtained from 317 colon cancer patients with all tumor stages. Correlation of the degree of staining with clinicopathological parameters and survival was investigated.</p> <p>Results</p> <p>Positive expression rates of HER-2/neu and VEGF in colon cancer were 15.5% and 55.5% respectively. HER-2/neu expression was significantly correlated with tumor size and distant metastases (<it>P </it>< 0.05), but was not an independent prognostic marker of survival <it>(P > 0.05)</it>. Expression of VEGF was significantly correlated with tumor size, tumor stage, lymph node metastases, and distant metastases (<it>P </it>< 0.05). The 5-year survival rate in patients with negative and positive VEGF expression was 70.2% and 61.9% respectively; the difference was not statistically significant <it>(P = 0.146)</it>. No correlation between HER-2/neu and VEGF expression was detected (<it>P = </it>0.151).</p> <p>Conclusions</p> <p>HER-2/neu and VEGF are not important prognostic markers of colon cancer. The present results do not support any association between HER2/neu and VEGF expression in this setting.</p
- ā¦