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Abstract

Big data plays an increasingly central role in many areas of research including optimiza-
tion and network modeling. We consider problems applicable to large datasets within these
two branches of research. We begin by presenting a nonlinearly preconditioned nonlinear
conjugate gradient (PNCG) algorithm to increase the convergence speed of iterative uncon-
strained optimization methods. We provide a concise overview of several PNCG variants
and their properties and obtain a new convergence result for one of the PNCG variants un-
der suitable conditions. We then use the PNCG algorithm to solve two different problems:
computing the rank-R canonical tensor decomposition and finding the solution to a latent
factor model where latent factor models are often used as important building blocks in
many practical recommendation systems. For both problems, the alternating least squares
(ALS) algorithm is typically used to find a solution and as such we consider it as a nonlinear
preconditioner. Note that the ALS algorithm can be viewed as a nonlinear preconditioner
for the NCG algorithm or alternatively, NCG can be viewed as an acceleration process for
ALS. We demonstrate numerically that the convergence acceleration mechanism in PNCG
often leads to important pay-offs for difficult tensor decomposition problems, with conver-
gence that is significantly faster and more robust than for the stand-alone NCG or ALS
algorithms. As well, we show numerically that the PNCG algorithm requires many fewer
iterations and less time to reach desired ranking accuracies than stand-alone ALS in solving
latent factor models.

We next turn to problems within the field of network or graph modeling. A network
is a collection of points joined together by lines and networks are used in a broad variety
of fields to represent connections between objects. Many large real-world networks share
similar properties which has garnered considerable interest in developing models that can
replicate these properties. We begin our discussion of graph models by closely examining
the Chung-Lu model [4, 22, 23]. The Chung-Lu model is a very simple model where by
design the expected degree sequence of a graph generated by the model is equal to a user-
supplied degree sequence, k = (k1, . . . , kn), where ki is the user-supplied degree of node i
and n is the number of nodes in the graph. We explore what happens both theoretically and
numerically when simple changes are made to the model and when the model assumptions
are violated. As well, we consider an algorithm used to generate instances of the Chung-
Lu model that is designed to be faster than the traditional algorithm but find that it
only generates instances of an approximate Chung-Lu model. We explore the properties
of this approximate model under a variety of conditions and examine how different the
expected degree sequence is from the user-supplied degree sequence. We also explore
several ways of improving this approximate model to reduce the approximation error in
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the expected degree sequence and note that when the assumptions of the original model
are violated this error remains very large. We next design a new graph generator to match
the community structure found in real-world networks as measured using the clustering
coefficient and assortativity coefficient. Our graph generator uses information generated
from a clustering algorithm run on the original network to build a synthetic network. Using
several real-world networks, we test our algorithm numerically by creating a synthetic
network and then comparing the properties to the real network properties as well as to the
properties of another popular graph generator, BTER, developed by Seshadhri, Kolda and
Pinar [94, 58]. Our graph generator does well at preserving the clustering coefficient and
typically outperforms BTER in matching the assortativity coefficient, particularly when
the assortativity coefficient is negative.
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Chapter 1

Introduction and Overview

Data science can be defined broadly as the extraction of knowledge from data. With
an increased focus on massive datasets there has been renewed interest in the data sci-
ences field. Data science itself encompasses a broad range of fields including optimization,
statistics, machine learning, artificial intelligence and databases. In this thesis, we focus
on two different problems within the data sciences field. Optimization algorithms play a
large role in data science so in the first part of this thesis we look at a particular opti-
mization algorithm, the nonlinear conjugate gradient algorithm (NCG), and examine how
to increase its convergence speed using a nonlinear preconditioner. We begin in Chap-
ter 2 by presenting the nonlinearly preconditioned nonlinear conjugate gradient algorithm
(PNCG) as a means of computing rank-R tensor decompositions. The alternating least
squares (ALS) algorithm is often considered the workhorse algorithm for computing the
rank-R canonical tensor approximation, but for certain problems its convergence can be
very slow. The nonlinear conjugate gradient method has been proposed as an alternative
to ALS [1], but the results indicated that NCG is usually not faster than ALS. To improve
the convergence speed of NCG, we consider a nonlinearly preconditioned nonlinear conju-
gate gradient algorithm for computing the rank-R canonical tensor decomposition. Our
approach uses ALS as a nonlinear preconditioner in the NCG algorithm. Alternatively,
NCG can be viewed as an acceleration process for ALS. We demonstrate numerically that
the convergence acceleration mechanism in PNCG often leads to important pay-offs for
difficult tensor decomposition problems, with convergence that is significantly faster and
more robust than for the stand-alone NCG or ALS algorithms. We consider several ap-
proaches for incorporating the nonlinear preconditioner into the NCG algorithm that have
been described in the literature previously and have met with success in certain applica-
tion areas. However, it appears that the nonlinearly preconditioned NCG approach has
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received relatively little attention in the broader community and remains underexplored
both theoretically and experimentally. Thus, this thesis provides in one place a concise
overview of several PNCG variants and their properties that have only been described in
a few places scattered throughout the literature, and it systematically compares the per-
formance of these PNCG variants for the tensor decomposition problem, drawing further
attention to the usefulness of nonlinearly preconditioned NCG as a general tool. In addi-
tion, we briefly discuss the convergence of the PNCG algorithm. In particular, we obtain
a new convergence result for one of the PNCG variants under suitable conditions, building
on known convergence results for non-preconditioned NCG.

Having shown that the PNCG algorithm can increase convergence speeds for the rank-
R canonical tensor decomposition we then use the algorithm in Chapter 3 to show that it
can accelerate convergence in latent factor models used to build recommendation systems
which are popular at many online business including Amazon [64], Netflix [10], and Spotify
[50]. In these latent factor models we are trying to decompose a matrix where many of the
values are missing and once again ALS is often used to compute this decomposition. Using
ALS as a nonlinear preconditioner we apply the PNCG algorithm to a popular latent
factor model. Using a movie ratings matrix from MovieLens [75] we demonstrate that
PNCG with ALS as a nonlinear preconditioner can significantly improve the convergence
speed of ALS using two different measures of convergence. One is the traditional measure
from optimization, the gradient norm of the objective function, where a method is said
to converge if the gradient norm is zero to a specified tolerance. The second is a measure
based on the rankings of the predicted ratings.

The second part of this thesis focuses on another problem within the data sciences
field: network or graph modeling. A network can be defined very simply as a collection
of points joined together by lines and networks can represent connections between entities
in a wide variety of fields including engineering, science, medicine, and sociology. Despite
originating from a variety of different fields, many large real-world networks have similar
properties and there has been significant interest in developing models that can replicate
these properties. In addition, there is substantial interest in developing algorithms known
as graph generators that can create synthetic graphs that replicate the properties of real-
world networks. Often, these algorithms are designed to generate synthetic graphs where
an underlying abstract graph generation model is the starting point but this is not always
the case. By building models that mimic the patterns and properties of real networks this
helps us to understand the implications of these patterns and determine which patterns
are important. By developing algorithms to synthesize real networks we can also examine
which growth processes are plausible for the growth of real-world networks and which are
not. Model development research serves an additional purpose. High-quality, large-scale
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network data is often not available, because of economic, legal, technological, or other
obstacles [19] and thus there are many instances where the systems of interest cannot be
represented by a given real-world network. When there is no single exemplar network,
the systems must instead be modeled as a collection of networks in which the variation
among them may be just as important as their common features. If we can create synthetic
networks that capture both the essential features of a system and realistic variability by
modeling these networks either using a formal abstract model or a practical graph generator
then we can use such synthetic graphs to perform tasks such as simulations, analysis, and
decision making as well as testing clustering algorithms and anomaly detection algorithms.

We begin our discussion of graph models in Chapter 4, where we examine a very
simple random graph model, the Chung-Lu model [4, 22, 23]. In the Chung-Lu model, the
probability of each edge is a function of a user-supplied degree sequence, k = (k1, . . . , kn),
where ki is the user-supplied degree of node i and n is the number of nodes in the graph.
By design the user-supplied degree sequence is equal to the expected degree sequence of
the graph model (i.e E(Di) = ki where Di is the degree of node i in the model). The
Chung-Lu model has a very simple algorithm which can be used to generate synthetic
graphs which represent instances of the model. However, this algorithm is computationally
expensive, which has led to the development of faster algorithms. We explore one such
algorithm, the Fast Chung-Lu (FCL) algorithm [94, 58] and observe that it does not in
fact generate instances of the Chung-Lu model but an approximation to the Chung-Lu
model. We explicitly formulate this approximate model and look at its properties, in
particular, we look at the approximation error in the expected degree distribution and find
that the expected degree of every node in the approximate model is below the expected
degree in the original Chung-Lu model (which is equal to ki). In addition to exploring
the approximation error in the FCL model we also explore the implications of violating
one of the central assumptions in the Chung-Lu model. In the Chung-Lu model, the user-
supplied degree sequence k must satisfy the constraint k2i ≤ 2m ∀ i, where m = 1

2

∑
i ki is

the number of edges in the graph. We examine what happens in the Chung-Lu model and
the FCL model when this assumption no longer holds. For the Chung-Lu model, the result
is another approximate (or extended) Chung-Lu model where the approximation error in
the expected degree distribution can be quite large and for the FCL model the model
remains the same however the approximation error for the expected degree distribution
worsens.

The approximation error in the expected degree distribution in the FCL model can be
quite large and in Chapter 5 we present several different methods for modifying the model
and reducing the approximation error. We will see in Chapter 4 that the FCL algorithm
requires drawing m edges to place in the graph. However, because there can be duplicate
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edges or self-edges which we discard the resulting graph instance may not have m edges.
One simple improvement we consider is increasing the number of edges drawn. We look at
several different alternatives for increasing the number of draws and find that by changing
the number of draws the difference between the expected degree in the FCL model and the
user-supplied degree (i.e. the expected degree in the original Chung-Lu model) is smaller
for some nodes, however, for some nodes we increase the expected degree above that of
the user-supplied degree and increase the approximation error. The next improvement we
consider is an algorithm that generates instances by first using the FCL algorithm and then
looking at the resulting instance to determine any additional edges needed. This algorithm
does improve the approximation error but the approximation error is still not insignificant.
Our final attempt at improving the approximation error relies on determining optimal
probabilities for matching the expected degree sequence to the actual degree sequence
in the FCL model. This results in a constrained optimization problem that is difficult
to solve and we turn to fixed point methods for an approximate solution. This method
which finds “improved ” probabilities performs the best at reducing the approximation
error in the degree distribution. We also examine the improvement proposed in [85] and
compare it to the improvements we suggest and find that for the problems we consider
our improved probabilities method still performs best. In the final part of this chapter,
in Section 5.6, we explore all the previously introduced model improvements when the
constraint k2i ≤ 2m ∀ i is violated. While all the improvements we suggest do reduce the
approximation error we note that the approximation error can remain very large. This
leads us to conclude that when the constraint k2i ≤ 2m ∀ i is violated the FCL model
(including any of the improvements) should not be used to generate instances to compare
with other graph generator instances, when evaluating the effectiveness of these other
graph generators. In the Chung-Lu model we expect the expected degree sequence to
equal the input degree sequence and in the FCL model we either expect (incorrectly) for
the expected degree sequence to equal the input degree sequence or for the approximation
error to be small. Thus, we expect other properties of the FCL model to be similar to
properties of the Chung-Lu model. Suppose we compare an instance generated by the FCL
algorithm to an instance generated by another graph generator and then draw conclusions
relating the original Chung-Lu model to the model underlying this other generator. If
the approximation error is quite large as in the case where the constraint k2i ≤ 2m ∀ i is
violated then these conclusions are likely incorrect.

In Chapter 6 we develop our own graph generator. As mentioned previously, graph gen-
erators are designed to match the properties of real-world networks. One network property
of particular interest is the community structure which can be defined in many different
ways. As we will see in Chapter 6 two common ways to measure the community structure
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of a network is through the clustering coefficient and the assortativity coefficient. We build
a graph generator that tries to capture these properties by using a clustering algorithm.
Using the Louvain clustering algorithm [13] to generate clusters of our input network we
then use these clusters and the subgraphs they induce to generate synthetic graphs. Using
a synthetic network generated from our algorithm we compare the properties to the real
network properties as well as to the properties of another popular graph generator, BTER,
developed by Seshadhri, Kolda and Pinar [94, 58]. We find that our graph generator does
well at preserving the clustering coefficient and typically outperforms BTER in matching
the assortativity coefficient, particularly when the assortativity coefficient is negative. We
also compare our synthetic graph to one generated using a simple edge switching algorithm
[79], an algorithm that is a building block of our graph generator. In our graph genera-
tor the clustering coefficient remains close to the original clustering coefficient, however,
the edge switching algorithm greatly reduces the clustering coefficient. As well, the edge
switching algorithm can change the assortativity coefficient by a large amount, but this
behaviour is once again not seen in instances generated by our graph generator.

Finally, in Chapter 7 we conclude by looking at areas of future research in both topic
areas.
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Chapter 2

A Nonlinearly Preconditioned
Conjugate Gradient Algorithm for
Rank-R Canonical Tensor
Approximation

2.1 Introduction

In this chapter, we consider a nonlinearly preconditioned nonlinear conjugate gradient
(PNCG) algorithm for computing a canonical rank-R tensor approximation using the
Frobenius norm as a distance metric. The current workhorse algorithm for computing the
canonical tensor decomposition is the alternating least squares (ALS) algorithm [18, 45, 56].
The ALS method is simple to understand and implement, but for certain problems its con-
vergence can be very slow [98, 56]. In [1], the nonlinear conjugate gradient (NCG) method
is considered as an alternative to ALS for solving canonical tensor decomposition problems.
However, [1] found that NCG is usually not faster than ALS. In this chapter, we show how
incorporating ALS as a nonlinear preconditioner into the NCG algorithm (or, equivalently,
accelerating ALS by the NCG algorithm) may lead to significant convergence acceleration
for difficult canonical tensor decomposition problems.

Our approach is among extensive, recent, research activity on nonlinear preconditioning
for nonlinear iterative solvers [36, 106, 101, 25, 17], including nonlinear GMRES and NCG.
This work builds on original contributions dating back as far as the 1960s [7, 24, 89, 83],
but much of this early work is not well-known in the broader community and large parts

6



of the landscape remain unexplored experimentally and theoretically [17]; the recent paper
[17] gives a comprehensive overview of the state of the art in nonlinear preconditioning and
provides interesting new directions.

In this chapter, we consider nonlinear preconditioning of NCG for the canonical ten-
sor decomposition problem. We consider several approaches for incorporating the non-
linear preconditioner into the NCG algorithm that are described in the literature (see
[9, 24, 70, 106, 17]). Early references to nonlinearly preconditioned NCG include [9] and
[24]. Both propose the NCG algorithm as a solution method for solving nonlinear elliptic
partial differential equations (PDEs) and while both present NCG algorithms that include
a possible nonlinear preconditioner, [24] actually uses a block nonlinear SSOR method as
the nonlinear preconditioner in their numerical experiments. Hager and Zhang’s survey
paper [44] describes a linearly preconditioned NCG algorithm, but does not discuss general
nonlinear preconditioning for NCG. More recent work on nonlinearly preconditioned NCG
includes [106], which uses parallel coordinate descent as a nonlinear preconditioner for one
variant of NCG applied to L1−L2 optimization in signal and image processing. The recent
overview paper [17] on nonlinear preconditioning also briefly mentions nonlinearly precon-
ditioned NCG, but discusses a different variant than [9], [24], [70] and [106]. In Section
2.3, the differences between the PNCG variants of [9, 24, 70, 106, 17] will be explained.
In Section 2.3 we will also prove a new convergence result for one of the PNCG variants,
building on known convergence results for non-preconditioned NCG. In Section 4, extensive
numerical tests on a set of standard test tensors systematically compare the performance
of the PNCG variants using ALS as the nonlinear preconditioner, and demonstrate the
effectiveness of the overall approach.

As mentioned above, we apply the PNCG algorithm to the tensor decomposition prob-
lem which can be described as follows. Let X ∈ RI1×I2×...×IN be an N -way or Nth-order
tensor of size I1× I2× . . .× IN . Let AR ∈ RI1×I2×...×IN be a canonical rank-R tensor given
by

AR =
R∑

r=1

a(1)
r ◦ . . . ◦ a(N)

r = JA(1), . . . ,A(N)K. (2.1)

The canonical tensor AR is the sum of R rank-one tensors, with the rth rank-one tensor
composed of the outer product of N column vectors a

(n)
r ∈ RIn , n = 1, . . . , N . We are

interested in finding AR as an approximation to X by minimizing the following function:

f(AR) =
1

2
‖X−AR‖2F , (2.2)

where ‖ · ‖F denotes the Frobenius norm of the N -dimensional array.
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The decomposition of X into AR is known as the canonical tensor decomposition. Pop-
ularized by Carroll and Chang [18] as CANDECOMP and by Harshman [45] as PARAFAC
in the 1970s, the decomposition is commonly referred to as the CP decomposition where
the ‘C’ refers to CANDECOMP and the ‘P’ refers to PARAFAC. The canonical tensor
decomposition is commonly used as a data analysis technique in a wide variety of fields
including chemometrics, signal processing, neuroscience and web analysis [56, 3].

The ALS algorithm for CP decomposition was first proposed in papers by Carroll and
Chang [18] and Harshman [45]. For simplicity we present the algorithm for a three-way
tensor X ∈ RI×J×K . In this case, the objective function (2.2) simplifies to

f(X̂) =
1

2
‖X− X̂‖2F with X̂ =

k∑

r=1

ar ◦ br ◦ cr = JA,B,CK. (2.3)

The ALS approach fixes B and C to solve for A, then fixes A and C to solve for B, then
fixes A and B to solve for C. This process continues until some convergence criterion is
satisfied. Once all but one matrix is fixed, the problem reduces to a linear least-squares
problem. Since we are solving a nonlinear equation for a block of variables while holding
all the other variables fixed the ALS algorithm is in fact a block nonlinear Gauss-Seidel
algorithm. The algorithm can easily be extended to N-way tensors by fixing all but one
of the matrices. The ALS method is simple to understand and implement, but can take
many iterations to converge. It is not guaranteed to converge to a global minimum or
even a stationary point of (2.2). We can only guarantee that the objective function in
(2.2) is nonincreasing at every step of the ALS algorithm. As well, if the ALS algorithm
does converge to a stationary point, the stationary point can be heavily dependent on the
starting guess. See [56, 100] for a discussion on the convergence of the ALS algorithm.

A number of algorithms have been proposed as alternatives to the ALS algorithm.
See [1, 56, 98, 42] and the references therein for examples. Acar, Dunlavy and Kolda [1]
recently applied a standard NCG algorithm to solve the problem. They find that NCG is
usually not faster than ALS, even though it has its advantages in terms of overfactoring
(i.e. computing the CP decomposition with R greater than the actual rank of the tensor)
and its ability to solve coupled factorizations [1, 2]. In an earlier paper, Paatero [84] uses
the linear conjugate gradient algorithm to solve the normal equations associated with the
CP decomposition and suggests the possible use of a linear preconditioner to increase the
convergence speed, however, no extensive numerical testing of the algorithm is performed.
Inspired by the nonlinearly preconditioned nonlinear GMRES method of [25], we propose
in this thesis to accelerate the NCG approach of [1] by considering the use of ALS as a
nonlinear preconditioner for NCG.
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In terms of notation, throughout this chapter we use CG to refer to the linear conjugate
gradient algorithm applied to a symmetric positive definite (SPD) linear system without
preconditioning, and PCG refers to CG for SPD linear systems with (linear) precondition-
ing. Similarly, NCG refers to the nonlinear conjugate gradient algorithm for optimization
problems without preconditioning, and PNCG refers to the class of (nonlinearly) precon-
ditioned nonlinear conjugate gradient methods for optimization.

The remainder of the chapter is structured as follows. In Section 2.2, we introduce the
standard nonlinear conjugate gradient algorithm for unconstrained continuous optimiza-
tion. Section 2.3 gives a concise description of several variants of the PNCG algorithm that
we collect from the literature and describe systematically, and it discusses their relation
to the PCG algorithm in the linear case, followed by a brief convergence discussion high-
lighting our new convergence result. In Section 2.4 we follow the experimental procedure
of Tomasi and Bro [98] to generate test tensors that we use to systematically compare the
several PNCG variants we have described with the standard ALS and NCG algorithms.
Section 2.5 concludes.

2.2 Nonlinear Conjugate Gradient Algorithm

The NCG algorithm for continuous optimization is an extension of the CG algorithm for
linear systems. The CG algorithm minimizes the convex quadratic function

φ(x) =
1

2
xTAx− bTx, (2.4)

where A ∈ Rn×n is an SPD matrix. Equivalently, the CG algorithm can be viewed as an
iterative method for solving the linear system of equations Ax = b. The NCG algorithm
is adapted from the CG algorithm and can be applied to any unconstrained optimization
problem of the form

min
x∈Rn

f(x) (2.5)

where f : Rn → R is a continuously differentiable function bounded from below. The
general form of the NCG algorithm is summarized in Algorithm 1.

The NCG algorithm is a line search algorithm that generates a sequence of iterates xi,
i ≥ 1 from the initial guess x0 using the recurrence relation

xk+1 = xk + αkpk. (2.6)
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Algorithm 1: Nonlinear Conjugate Gradient Algorithm (NCG)

Input: x0

Evaluate g0 = ∇f(x0);
Set p0 ← −g0, k ← 0;
while gk 6= 0 do

Compute αk;
xk+1 ← xk + αkpk;
Evaluate gk+1 = g(xk+1) = ∇f(xk+1);
Compute βk+1;
pk+1 ← −gk+1 + βk+1pk;
k ← k + 1;

end

The parameter αk > 0 is the step length and pk is the search direction generated by the
following rule:

pk+1 = −gk+1 + βk+1pk, p0 = −g0, (2.7)

where βk+1 is the update parameter and gk = ∇f(xk) is the gradient of f evaluated at xk.
In the CG algorithm, αk is defined as

αCGk =
rTk rk

pTkApk
, (2.8)

and βk+1 is defined as

βCGk+1 =
rTk+1rk+1

rTk rk
, (2.9)

where rk = ∇φ(xk) = Axk − b is the residual. In the nonlinear case αk is determined by
a line search algorithm and βk+1 can assume various different forms. We consider three
different forms in this chapter, given by

βFRk+1 =
gTk+1gk+1

gTk gk
, (2.10)

βPRk+1 =
gTk+1(gk+1 − gk)

gTk gk
, (2.11)

βHSk+1 =
gTk+1(gk+1 − gk)

(gk+1 − gk)Tpk
. (2.12)
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Fletcher and Reeves [38] first showed how to extend the conjugate gradient algorithm to the
nonlinear case. By replacing the residual, rk, with the gradient of the nonlinear objective
f , they obtained a formula for βk+1 of the form βFRk+1. The variant βPRk+1 was developed by
Polak and Ribière [88] and the Hestenes-Stiefel [48] formula is given by Equation (2.12). For
all three versions, it can easily be shown that, if a convex quadratic function is optimized
using the NCG algorithm and the line search is exact then βFRk+1 = βPRk+1 = βHSk+1 = βCGk+1

where βCGk+1 is given by Equation (2.9), see [81, Section 5.2].

2.3 Preconditioned Nonlinear Conjugate Gradient Al-

gorithm

In this section we give a concise description of several variants of PNCG that have been
proposed in a few places in the literature but have not been discussed and compared
systematically in one place, briefly discuss some of their relevant properties, and prove a
new convergence property for one of the variants. Before we introduce PNCG we describe
the PCG algorithm for linear systems. We do this because it will be useful for interpreting
some of the variants for βk+1 in the PNCG algorithm. In particular, one variant of the
βk+1 formulas has the property that PNCG applied to the convex quadratic function (2.4)
is equivalent to PCG under certain conditions on the line search and the preconditioner.

2.3.1 Linearly Preconditioned Linear Conjugate Gradient Algo-
rithm

Preconditioning the conjugate gradient algorithm is commonly used in numerical linear
algebra to speed up convergence [92, p. 261]. The rate of convergence of the linear con-
jugate gradient algorithm can be bounded by examining the eigenvalues of the matrix A
in (2.4). For example, if the eigenvalues occur in r distinct clusters the CG iterates will
approximately solve the problem in r steps [81, p. 117, 99, p. 299]. Thus, one way to
improve the convergence of the CG algorithm is to transform the linear system Ax = b
to improve the eigenvalue distribution of A. Consider a change of variables from x to x̂
via a symmetric positive definite matrix C such that x̂ = Cx. This process is known as
preconditioning. The new objective function is

φ̂(x̂) =
1

2
x̂T (C−TAC−1)x̂− (C−Tb)T x̂, (2.13)
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and the new linear system is
(C−TAC−1)x̂ = C−Tb. (2.14)

Thus, the convergence rate will depend on the eigenvalues of the matrix C−TAC−1. If
we choose C such that the condition number of C−TAC−1 is smaller than the condition
number of A or such that eigenvalues of C−TAC−1 are clustered, then hopefully the
preconditioned CG algorithm will converge faster than the regular CG algorithm. The
preconditioned conjugate gradient algorithm is given in Algorithm 2, expressed in terms
of the original variable x using the SPD preconditioning matrix P = C−1C−T . Note
that the preconditioned linear system (2.14) can equivalently be expressed as PAx = Pb,
where PA has the same eigenvalues as C−TAC−1. In Algorithm 2, we do not actually
form the matrix P explicitly. Instead, we solve the linear system Myk = rk for yk with
M = P−1 = CTC and use yk in place of Prk. See [81, Algorithm 5.3] for the PCG
algorithm written in this way. Algorithm 2 is written in terms of P to compare the PCG
algorithm with the preconditioned NCG algorithm in what follows.

Algorithm 2: Linearly Preconditioned Linear Conjugate Gradient Algorithm (PCG)

Input: x0, Preconditioner P = C−1C−T

Evaluate r0 = Ax0 − b;
Evaluate p0 = −Pr0, k ← 0;
while rk 6= 0 do

αk ←
rTkPrk
pkApk

;

xk+1 ← xk + αkpk;
rk+1 ← rk + αkApk;

βk+1 ←
rTk+1Prk+1

rkPrk
;

pk+1 ← −Prk+1 + βk+1pk;
k ← k + 1;

end

2.3.2 Linearly Preconditioned Nonlinear Conjugate Gradient Al-
gorithm

We can also apply a linear change of variables, x̂ = Cx, to the NCG algorithm as is
explained in review paper [44]. The linearly preconditioned NCG algorithm expressed in
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terms of the original variable x can be described by the following equations:

xk+1 = xk + αkpk, (2.15)

pk+1 = −Pgk+1 + β̆k+1pk, p0 = −Pg0, (2.16)

where P = C−1C−T . The formulas for β̆k+1 remain the same as before (Equations (2.10)–
(2.12)), except that gk and pk are replaced by C−Tgk and Cpk, respectively. Thus we
obtain linearly preconditioned versions of the βk+1 parameters of Equations (2.10)–(2.12):

β̆FRk+1 =
gTk+1Pgk+1

gTk Pgk
, (2.17)

β̆PRk+1 =
gTk+1P(gk+1 − gk)

gTk Pgk
, (2.18)

β̆HSk+1 =
gTk+1P(gk+1 − gk)

(gk+1 − gk)Tpk
. (2.19)

If we use the linearly preconditioned NCG algorithm with these β̆k+1 formulas to min-
imize the convex quadratic function, φ(x), defined in Equation (2.4), using an exact line
search, where gk = rk, then the algorithm is the same as the PCG algorithm described
in Algorithm 2. This can easily be shown in the same way as Equations (2.10)–(2.12)
are shown to be equivalent to Equation (2.9) in the linear case without preconditioning
[44, 81]. Hager and Zhang’s survey paper [44] describes this linearly preconditioned NCG
algorithm, and also notes that P can be chosen differently in every step (see [77]). While
a varying P does introduce a certain type of nonlinearity into the preconditioning process,
the preconditioning in every step remains a linear transformation, and is thus different
from the more general nonlinear preconditioning to be described in the next section, which
employs a general nonlinear transformation in every step.

2.3.3 Nonlinearly Preconditioned Nonlinear Conjugate Gradient
Algorithm

Suppose instead, we wish to introduce a nonlinear transformation of x. In particular,
suppose we consider a nonlinear iterative optimization method such as Gauss-Seidel. Let
xk be the preliminary iterate generated by one step of a nonlinear iterative method, i.e.,
we write

xk = P (xk), (2.20)
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which we will use as a nonlinear preconditioner. We assume that P is a fixed point method
of ∇f(x) = 0. Thus, any stationary point of the optimization problem in Equation (2.5)
is a fixed point of P and vice versa (i.e. x∗ = P (x∗) ⇔ x∗ is a stationary point of f(x)).
Now define the direction generated by the nonlinear preconditioner as

gk = xk − xk = xk − P (xk). (2.21)

In nonlinearly preconditioned NCG, one considers the nonlinearly preconditioned direc-
tion, gk, instead of the gradient, gk, in formulating the NCG method [9, 24, 70, 106, 17].
This idea can be motivated by the linear preconditioning of CG, where gk = rk is replaced
by the preconditioned gradient Pgk = Prk in certain parts of Algorithm 2. This corre-
sponds to replacing the Krylov space for CG, which is formed by the gradients gk = rk,
with the left-preconditioned Krylov space for PCG, which is formed by the preconditioned
gradients Pgk = Prk. In a similar way, we replace the nonlinear gradients gk with the
nonlinearly preconditioned directions gk. Note that this approach is called nonlinear left-
preconditioning in [17], which also considers nonlinear right-preconditioning.

Thus, our nonlinearly preconditioned NCG algorithm is given by the following equa-
tions:

xk+1 = xk + αkpk, (2.22)

pk+1 = −gk+1 + βk+1pk, p0 = −g0, (2.23)

instead of Equations (2.6) and (2.7) or Equations (2.15) and (2.16). The formulas for
βk+1 in Equation (2.23) are modified versions of the βk+1 from Equations (2.10)–(2.12)
that incorporate gk. However, there are several different ways to modify the βk+1 to
incorporate gk, leading to several different variants of βk+1. Algorithm 3 summarizes the
PNCG algorithm, and Table 2.1 summarizes the variants of βk+1 we consider in this chapter
for PNCG. Note that the nonlinear preconditioner is not guaranteed to produce a descent
direction. Thus, if −gk+1 is not a descent direction (i.e. −gTk+1gk+1 > 0) we modify it so
it is a decent direction. As we will see in Theorem 2, if −gk+1 is a descent direction and
we use a line search algorithm to find αk+1 that satisfies the strong Wolfe conditions then
pk+1 is also a descent direction (i.e pTk+1gk+1 < 0).

The first set of βk+1 variants we consider are the β̃k+1 shown in column 1 of Table 2.1.

The β̃k+1 formulas are derived by replacing all occurrences of gk with gk in the formulas
for βk+1, Equations (2.10)–(2.12):

β̃FRk+1 =
gTk+1gk+1

gTk gk
, (2.24)
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Algorithm 3: Nonlinearly Preconditioned Nonlinear Conjugate Gradient Algorithm
(PNCG)

Input: x0

Evaluate x0 = P (x0);
Set g0 = x0 − x0;
Set p0 ← −g0, k ← 0;
while gk 6= 0 do

Compute αk;
xk+1 ← xk + αkpk;
gk+1 ← xk+1 − P (xk+1);
if −gTk+1gk+1 > 0 then

gk+1 ← −gk+1;
end

Compute βk+1;

pk+1 ← −gk+1 + βk+1pk;
k ← k + 1;

end

β̃PRk+1 =
gTk+1(gk+1 − gk)

gTk gk
, (2.25)

β̃HSk+1 =
gTk+1(gk+1 − gk)

(gk+1 − gk)
Tpk

. (2.26)

This is a straightforward generalization of the βk+1 expressions in Equations (2.10)–(2.12),
and the systematic numerical comparisons to be presented in Section 2.4 indicate that
these choices lead to efficient PNCG methods. The PR variant of this formula is used in
[17] in the context of PDE solvers.

However, the reader may note that Equations (2.17)–(2.19) suggest different choices for
the βk+1 formulas, variants which reduce to the PCG update formulas in the linear case.
Indeed, suppose we apply Algorithm 3 to the convex quadratic problem, (2.4), with an
exact line search, using a symmetric stationary linear iterative method such as symmetric
Gauss-Seidel or Jacobi as a preconditioner. We begin by writing the stationary iterative
method in general form as

xk = P (xk) = xk −Prk, (2.27)

where the SPD preconditioning matrix P is often written as M−1 and rk = gk. The search
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Table 2.1: Variants of βk+1 for the Nonlinearly Preconditioned Nonlinear Conjugate Gra-
dient Algorithm (PNCG).

β̃k+1 β̂k+1

Fletcher-Reeves β̃FRk+1 =
gTk+1gk+1

gTk gk
β̂FRk+1 =

gTk+1gk+1

gTk gk

Polak-Ribière β̃PRk+1 =
gTk+1(gk+1 − gk)

gTk gk
β̂PRk+1 =

gTk+1(gk+1 − gk)

gTk gk

Hestenes-Stiefel β̃HSk+1 =
gTk+1(gk+1 − gk)

(gk+1 − gk)
Tpk

β̂HSk+1 =
gTk+1(gk+1 − gk)

(gk+1 − gk)Tpk

direction gk from Equation (2.21) simply becomes

gk = xk − xk = Prk = Pgk. (2.28)

This immediately suggests a generalization of the linearly preconditioned NCG parameters
β̆k+1 of Equations (2.17)–(2.19) to the case of nonlinear preconditioning: replacing all
occurrences of Pgk with gk we obtain the expressions

β̂FRk+1 =
gTk+1gk+1

gTk gk
, (2.29)

β̂PRk+1 =
gTk+1(gk+1 − gk)

gTk gk
, (2.30)

β̂HSk+1 =
gTk+1(gk+1 − gk)

(gk+1 − gk)Tpk
. (2.31)

Expressions of this type have been used in [9, 24, 70, 106]. It is clear that the PNCG
algorithm with this second set of expressions, which are listed in the right column of Table
2.1, reduces to the PCG algorithm in the linear case, since the β̂k+1 reduce to the β̆k+1 in
the case of a linear preconditioner, and the β̆k+1 in turn reduce to the βk+1 from the PCG
algorithm when solving an SPD linear system. For completeness, we state this formally in
the following theorem.
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Theorem 1. Let A and P be SPD matrices. Then PNCG (Algorithm 3) with β̂FRk+1, β̂PRk+1

or β̂HSk+1 of Table 2.1 applied to the convex quadratic problem φ(x) = 1
2
xTAx−bTx using an

exact line search and a symmetric linear stationary iterative method with preconditioning
matrix P as the preconditioner, reduces to PCG (Algorithm 2) applied to the linear system
Ax = b with the same preconditioner.

Thus, for the nonlinearly preconditioned NCG method, we have two sets of βk+1 for-

mulas: the β̂k+1 formulas have the property that the PNCG algorithm reduces to the PCG
algorithm in the linear case, whereas the β̃k+1 formulas do not enjoy this property. Due
to this property, one might expect the β̂k+1 formulas to perform better, but our numerical
tests show that this is not necessarily the case. Hence, we will use both the β̃k+1 and β̂k+1

formulas in our numerical tests.

Next we investigate aspects of convergence of the PNCG algorithm. For the NCG
algorithm without preconditioning, global convergence can be proved for the Fletcher-
Reeves method applied to a broad class of objective functions, in the sense that

lim inf
k→∞

‖gk‖ = 0, (2.32)

when the line search satisfies the strong Wolfe conditions (see [44, 81] for a general dis-
cussion on NCG convergence). Global convergence cannot be proved in general for the
Polak-Ribière or Hestenes-Stiefel variants. Nevertheless, these methods are also widely
used and may perform better than Fletcher-Reeves in practice. Global convergence can be
proved for variants of these methods in which every search direction pk is guaranteed to
be a descent direction (gTk pk < 0), and in which the iteration is restarted periodically with
a steepest-descent step.

It should come as no surprise that general convergence results for the PNCG algorithm
are also difficult to obtain: use of a nonlinear preconditioner only exacerbates the already
considerable theoretical difficulties in analyzing the convergence properties of these types
of nonlinear optimization methods. However, with the use of the following theorem we
will be able to establish global convergence for a restarted version of the β̂FRk variant
of the PNCG algorithm with a line search satisfying the strong Wolfe conditions, under
the condition that the nonlinear preconditioner produces descent directions. Since the
proof is dependent on the line search satisfying the strong Wolfe conditions we include the
conditions for completeness.

Strong Wolfe Conditions. The strong Wolfe conditions require the step length param-
eter, αk, in the update equation, xk+1 = xk + αkpk, of any line search method to satisfy
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the following:

f(xk + αkpk) ≤ f(xk) + c1αk∇fTk pk, (2.33)

|∇f(xk + αkpk)
Tpk| ≤ c2|∇fTk pk|, (2.34)

with 0 < c1 < c2 < 1.

Condition (2.33) is known as the sufficient decrease or Armijo condition and condition
(2.34) is known as the curvature condition. The proof of our theorem relies on condition
(2.34). We will use this condition to help show that the PNCG search directions pk
obtained using β̂FRk are descent directions when the nonlinear preconditioner produces
descent directions. To show this we follow the proof technique in [81, Lemma 5.6].

Theorem 2. Consider the PNCG algorithm given in Algorithm 3 with βk+1 = β̂FRk+1 and
where αk satisfies the strong Wolfe conditions. Let P (x) be a nonlinear preconditioner such
that −g(xk) = P (xk) − xk is a descent direction for all k, i.e., −gTk gk < 0. Suppose the
objective function f is bounded below in Rn and f is continuously differentiable in an open
set N containing the level set L := {x : f(x) ≤ f(x0)}, where x0 is the starting point of
the iteration. Assume also that the gradient gk is Lipschitz continuous on N . Then,

∑

k≥0

cos2 θk‖gk‖2 <∞, (2.35)

where

cos θk =
−gTk pk
‖gk‖‖pk‖

. (2.36)

Proof. We show that pk is a descent direction, i.e., gTk pk < 0 ∀ k. Then condition (2.35)
follows directly from [81, Theorem 3.2] which states that condition (2.35) holds for any
iteration of the form xk+1 = xk + αkpk provided that the above conditions hold for αk, f
and gk, and where pk is a descent direction.

Instead of proving that gTk pk < 0 directly, we will prove the following:

− 1

1− c2
≤ gTk pk

gTk gk
≤ 2c2 − 1

1− c2
, k ≥ 0, (2.37)

where 0 < c2 <
1
2

is the constant from the curvature condition of the strong Wolfe condi-
tions:

|gTk+1pk| ≤ c2|gTk pk|. (2.38)
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Note, that the function t(ξ) = (2ξ − 1)/(1− ξ) is monotonically increasing on the interval
[0, 1

2
] and that t(0) = −1 and t(1

2
) = 0. Thus, because c2 ∈ (0, 1

2
), we have

− 1 <
2c2 − 1

1− c2
< 0. (2.39)

Also note that since −gk is a descent direction, gTk gk > 0. So, if (2.37) holds then gTk pk < 0
and pk is a descent direction.

We use an inductive proof to show that (2.37) is true. For k = 0, we use the definition
of p0 to get,

gT0 p0

gT0 g0

=
−gT0 g0

gT0 g0

= −1. (2.40)

From (2.39) we have
gT0 p0

gT0 g0

= −1 ≤ 2c2 − 1

1− c2
. (2.41)

Note, that the function t(ξ) = −1/(1− ξ) is monotonically decreasing on the interval [0, 1
2
]

and that t(0) = −1 and t(1
2
) = −2. Thus, because c2 ∈ (0, 1

2
), we have

− 2 < − 1

1− c2
< −1. (2.42)

Thus,
gT0 p0

gT0 g0

= −1 ≥ − 1

1− c2
. (2.43)

Now suppose

− 1

1− c2
≤ gTl pl

gTl gl
≤ 2c2 − 1

1− c2
, l = 1, . . . , k. (2.44)

We need to show that (2.37) is true for k + 1. Using the definition of pk+1 we have,

gTk+1pk+1

gTk+1gk+1

=
gTk+1

(
−gk+1 + β̂FRk+1pk

)

gTk+1gk+1

= −1 + β̂FRk+1

gTk+1pk

gTk+1gk+1

. (2.45)

From the Wolfe condition, Equation (2.38), and the inductive hypothesis, which implies
that gTk pk < 0, we can write

c2g
T
k pk ≤ gTk+1pk ≤ −c2gTk pk. (2.46)

19



Combining this with Equation (2.45), we have

− 1 + c2β̂
FR
k+1

gTk pk
gTk+1gk+1

≤
gTk+1pk+1

gTk+1gk+1

≤ −1− c2β̂FRk+1

gTk pk
gTk+1gk+1

(2.47)

So,

gTk+1pk+1

gTk+1gk+1

≥ −1 + c2β̂
FR
k+1

gTk pk
gTk+1gk+1

= −1 + c2

(
gTk+1gk+1

gTk gk

)
gTk pk

gTk+1gk+1

= −1 + c2

(
gTk pk
gTk gk

)

≥ −1− c2
1− c2

= − 1

1− c2
,

and

gTk+1pk+1

gTk+1gk+1

≤ −1− c2β̂FRk+1

gTk pk
gTk+1gk+1

= −1− c2
(

gTk+1gk+1

gTk gk

)
gTk pk

gTk+1gk+1

= −1− c2
(

gTk pk
gTk gk

)

≤ −1 +
c2

1− c2
=

2c2 − 1

1− c2
.

We can now easily establish that convergence holds for a restarted version of the PNCG
algorithm with β̂FRk+1 if a nonlinear preconditioner is used that produces descent directions:
If we use the steepest decent direction as the search direction on every mth iteration of the
algorithm and then restart the PNCG algorithm with pm+1 = −gm+1 = −xm + P (xm),
then Equation (2.35) of Theorem 2 is still satisfied for the combined process and

lim inf
k→∞

‖gk‖ = 0, (2.48)
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since cos θk = 1 for the steepest descent steps [81, p. 128]. Thus we are guaranteed
overall global convergence for this method. Note that the proof for global convergence of
NCG using βFRk+1 without restarting [81, Theorem 5.7] does not carry over to the case of

unrestarted PNCG with β̂FRk+1.

For (2.35) to hold we must assume that βk+1 = β̂FRk+1. However, if we use a more
restrictive line search we can show that (2.35) holds for any variant of βk+1 provided that
the remaining assumptions of Theorem 2 hold. Suppose we use an “ideal” line search
at every step of the PNCG algorithm where a line search is considered ideal if αk is
a stationary point of f(xk + αkpk). If αk is a stationary point of f(xk + αkpk) then
∇f(xk + αkpk)

Tpk = gTk+1pk = 0 and using the definition of pk we have

gTk pk = gTk (−gk + βkpk−1)

= −gTk gk + βkg
T
k pk−1

= −gTk gk < 0,

provided−gk is a descent direction. Thus, pk is a descent direction for all k and (2.35) holds
for all variants of βk+1. This implies that any restarted version of the PNCG algorithm
with an ideal line search is guaranteed to converge provided −gk is a descent direction.
See [24] for a similar proof when gk = M−1gk and M is a positive definite matrix, which
guarantees that −gk is a descent direction. We should also note that performing an ideal
line search at every step of the PNCG algorithm is often prohibitively expensive and thus
not used in practice.

Both convergence results require that the nonlinearly preconditioned directions −gk =
P (xk) − xk be descent directions. If one assumes a continuous preconditioning function
P (x) such that −g(x) = P (x)−x is a descent direction for all x in a neighbourhood of an
isolated local minimizer x∗ of a continuously differentiable objective function f(x), then
this implies that the nonlinear preconditioner satisfies the fixed-point condition x∗ = P (x∗),
which is a natural condition for a nonlinear preconditioner. It is often the case in nonlinear
optimization that convergence results only hold under restrictive conditions and are mainly
of theoretical value. In practice, numerical results may show satisfactory convergence
behaviour for much broader classes of problems. Our numerical results will show that
this is also the case for PNCG applied to canonical tensor decomposition: While the ALS
preconditioner satisfies the fixed-point property, it is not guaranteed to produce descent
directions. Our PNCG algorithm accounts for this and convergence was generally observed
numerically for all the PNCG variants we considered, with the β̃PR variant producing the
fastest results in most cases.
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2.3.4 Application of the PNCG Algorithm to the CP Optimiza-
tion Problem

Thus far we have described the PNCG algorithm in very general terms. The algorithm
can be applied to any continuously differentiable function bounded from below using any
nonlinear iterative method as a preconditioner. We now discuss how to apply Algorithm
3 to the CP optimization problem. The two quantities that are most important in the
computation of Algorithm 3 are the gradient, gk, and the preconditioned value, P (xk).
Not only is the gradient used in some of the formulas for βk+1, it is also used in calculating
the step length parameter, αk. We choose to use the ALS algorithm as a preconditioner
since it is the standard algorithm used to solve the CP decomposition problem. We briefly
revisit the ALS algorithm before discussing the computation of the gradient, gk. The CP
optimization problem for an N -way tensor X ∈ RI1×···×IN is given by

min f(A(1), . . . ,A(N)) =
1

2
‖X− JA(1), . . . ,A(N)K‖2F , (2.49)

where A(n), n = 1, . . . , N , is a factor matrix of size In×R and the following size parameters
are defined:

K =
N∏

l=1

Il, K
(n)

=
N∏

l=1,l 6=n

Il. (2.50)

Rather than solve (2.49) for A(1) through A(N) simultaneously, the ALS algorithm solves
for each factor matrix one at a time. The exact solution for each factor matrix is given by

A(n) = X(n)A
(−n)(Γ(n))†, (2.51)

where
Γ(n) = Υ(1) ∗ · · · ∗Υ(n−1) ∗Υ(n+1) ∗ · · · ∗Υ(N), (2.52)

Υ(n) = A(n)TA(n), (2.53)

A(−n) = A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1), (2.54)

where � is the Khatri-Rho or Hadamard product [56], ∗ denotes the elementwise product,

and X(n) ∈ RIn×K
(n)

is the mode-n matricization of X, obtained by stacking the n-mode
fibers of X in its columns in a regular way as defined in [56]. For more details of the
derivation of Equation (2.51) see [56].

The primary cost of solving for A(n) is multiplying the matricized tensor, X(n), with

the Khatri-Rao product, A(−n). The matrix X(n) is of size In ×K
(n)

and A(−n) is of size
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K
(n) × R where K

(n)
= K/In. Thus the cost of computing Equation (2.51), measured

in terms of the number of operations, is O(KR). One iteration of the ALS algorithm
requires us to solve for each factor matrix, thus each iteration of the ALS algorithm has a
computational cost of O(NKR).

We now discuss the gradient of the objective function in (2.49). It can be written as a
vector of matrices

∇f(AR) = G(AR) = (G(1), . . . ,G(n)), (2.55)

where G(n) ∈ RIn×R, n = 1, . . . , N . Each matrix G(n), n = 1, . . . , N , is given by

G(n) = −X(n)A
(−n) + A(n)Γ(n). (2.56)

The derivation of (2.56) can be found in [1]. From Equation (2.56) we can see that the cost
of computing one gradient matrix, G(n), is dominated by the calculation of X(n)A

(−n) and
thus the computational cost of computing the gradient, ∇f(AR), is O(NKR), the same
as one iteration of the ALS algorithm.

2.4 Numerical Results

To test our PNCG algorithm we randomly generate artificial tensors of different sizes,
ranks, collinearity, and heteroskedastic and homoskedastic noise, which constitute stan-
dard test problems for CP decomposition [98]. We then compare the performance of the
CP factorization using the PNCG algorithm with results from using the ALS and NCG
algorithms.

2.4.1 Problem Description

The artificial tensors are generated using the methodology of [98]. All the tensors we
consider are 3-way tensors. Each dimension has the same size but we consider tensors
of three different sizes, I = 20, 50 and 100. The factor matrices A(1), A(2), and A(3) are
generated randomly so that the collinearity of the factors in each mode is set to a particular
level C. The steps necessary to create the factor matrices are outlined in [98]. Thus,

a
(n)T
r a

(n)
s

‖a(n)
r ‖‖a(n)

s ‖
= C, (2.57)
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for r 6= s, r, s = 1, . . . , R and n = 1, 2, 3. As in [1], the values of C we consider are 0.5 and
0.9, where higher values of C make the problem more difficult. We consider two different
values for the rank, R = 3 and R = 5. For each combination of R and C we generate a set
of factor matrices. Once we have converted these factors into a tensor and added noise our
goal is to recover these underlying factors using the different optimization algorithms. From
a given set of factor matrices we are able to generate nine test tensors by adding different
levels of homoskedastic and heteroskedastic noise. Homoskedastic noise refers to noise with
constant variance whereas heteroskedastic noise refers to noise with differing variance. The
noise ratios we consider for homoskedastic and heteroskedastic noise are l1 = 1, 5, 10 and
l2 = 0, 1, 5, respectively, see [98, 1]. Suppose N1,N2 ∈ RI1×···×IN are random tensors with
entries chosen from a standard normal distribution. Then we generate the test tensors as
follows. Let the original tensor be

X = JA(1),A(2),A(3)K. (2.58)

Homoskedastic noise is added to give:

X′ = X + (100/l1 − 1)−
1
2
‖X‖
‖N1‖

N1, (2.59)

and then heteroskedastic noise is added to give:

X′′ = X′ + (100/l2 − 1)−
1
2
‖X′‖

‖N2 ∗ X′‖
N2 ∗ X′. (2.60)

The optimization algorithms are applied to the test tensor X′′ and in the case where l2 = 0,
X′′ = X′. To test the performance of each optimization algorithm we apply the algorithm
to the test tensor X′′ using 20 different random starting values, where the same 20 starting
values are used for each algorithm. Thus for each size, I = 20, 50 and 100 we generate
36 test tensors since we consider 2 different ranks, 2 different collinearity values, 1 set of
factor matrices for each combination of C and R and 9 different levels of noise and for
each of these test tensors we apply a given optimization algorithm 20 different times using
different random starting values.

2.4.2 Results

We begin by presenting numerical results for the smallest case where I = 20. All numer-
ical experiments where performed on a Linux Workstation with a Quad-Core Intel Xeon
3.16GHz processor and 8GB RAM. We use the NCG algorithm from the Poblano toolbox
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for MATLAB [30] which uses the Moré-Thuente line search algorithm [74]. We use the
same line search algorithm for the PNCG algorithm. We use the default line search param-
eters specified in the Poblano toolbox which are as follows: 10−4 for the sufficient decrease
condition tolerance, 10−2 for the curvature condition tolerance, an initial step length of 1
and a maximum of 20 iterations. The ALS algorithm we use is from the tensor toolbox
for MATLAB [8]; however, we use a different normalization of the factors (as explained
below) and we use the gradient norm as a stopping condition instead of the relative func-
tion change. In the CP decomposition, it is often useful to assume that the columns of
the factor matrices, A(n), are normalized to length one with the weights absorbed into a
vector λ ∈ Rk. Thus

X ≈
k∑

r=1

λra
(1)
r ◦ . . . ◦ a(N)

r . (2.61)

In our ALS algorithm the factors are normalized such that λ is distributed evenly over all
the factors. Also note that, while the gradient norm is used as a stopping condition for
the ALS algorithm, the calculation of the gradient is not included in the timing results
for the ALS algorithm. For all three algorithms, ALS, NCG and PNCG, there are three
stopping conditions; all are set to the same value for each algorithm. They are as follows:
10−9 for the gradient norm divided by the number of variables, ‖G(AR)‖2/N where N is
the number of variables in X, 104 for the maximum number of iterations and 105 for the
maximum number of function evaluations.

For I = 20 and R = 3, Table 2.2 summarizes the results for each algorithm while Table
2.3 summarizes the results for I = 20 and R = 5. For each value of the rank, R, there are
two possible values for the collinearity, C = 0.5 and C = 0.9. Once the collinearity has been
fixed, a test tensor is created and there are nine different combinations of homoskedastic
and heteroskedastic noise added to each test tensor. We then generate 20 different initial
guesses with components chosen randomly from a uniform distribution between 0 and 1.
Each algorithm is tested using each of these initial guesses. Thus, for each collinearity
value there are 180 CP decompositions performed by each algorithm. Each table reports
the overall timings for the 180 CP decompositions. The timing is written in the form a± b
where a is the mean time and b is the standard deviation. The first number in brackets
represents the number of CP decompositions that converge before reaching the maximum
number of iterations or function evaluations out of a possible 180. All timing calculations
are performed for the converged runs only. The second number in brackets represents the
number of runs where the algorithm is able to recover the original set of factor matrices.
We use a measure, defined in [98], known as congruence to determine if an algorithm is
able to recover the original factors where the congruence between two rank-one tensors,
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X = a ◦ b ◦ c and Y = p ◦ q ◦ r is defined as

cong(X,Y) =
|aTp|
‖a‖‖p‖

· |b
Tq|

‖b‖‖q‖
· |c

T r|
‖c‖‖r‖

. (2.62)

If the congruence is above 0.97 (≈ 0.993) for every component rank-one tensor then we
say that the algorithm has successfully recovered the original factor matrices. Since the
CP decomposition is unique up to a permutation of the component rank-one tensors, we
consider all permutations when calculating congruences and choose the permutation that
results in the greatest sum of congruences of rank-one tensors. We also calculate the
congruences for all runs regardless of whether or not they converge.

Table 2.2: Speed Comparison with R = 3 and I = 20.

Optimization Method
Mean Time (Seconds)

C = 0.5 C = 0.9

ALS 0.1644 ± 0.0185 (180) (180) 5.3182 ± 1.1356 (180) (99)

NCG - βFR 0.8617 ± 0.6658 (178) (180) 4.1649 ± 3.8092 (172) (98)

PNCG - β̃FR 1.1707 ± 0.5962 (180) (180) 1.7556 ± 0.5792 (180) (99)

PNCG - β̂FR 1.5308 ± 0.7196 (180) (180) 2.1131 ± 1.3339 (180) (99)

NCG - βPR 0.5170 ± 0.5300 (179) (180) 3.5328 ± 2.7377 (167) (97)

PNCG - β̃PR 0.3434 ± 0.2611 (180) (180) 0.9676 ± 0.2020 (180) (99)

PNCG - β̂PR 0.4087 ± 0.2592 (180) (180) 0.9979 ± 0.3077 (180) (99)

NCG - βHS 0.4457 ± 0.3458 (178) (180) 3.1265 ± 2.0725 (167) (98)

PNCG - β̃HS 0.4969 ± 0.4234 (180) (180) 3.3269 ± 3.6214 (180) (99)

PNCG - β̂HS 0.4675 ± 0.3095 (180) (180) 1.0267 ± 0.4513 (180) (99)

From the results it is clear that when C = 0.5, ALS is the fastest algorithm. The results
also indicate that for a given formula for β, NCG is faster that either PNCG algorithm.
However, when the collinearity is 0.5, it is known that the problem is relatively easy
[98, 1, 25], so we don’t necessarily expect the preconditioned algorithm to outperform the
standard algorithm, and the additional time needed to perform the preconditioning may
actually slow the algorithm down relative to the original algorithm. The results change
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Table 2.3: Speed Comparison with R = 5 and I = 20.

Optimization Method
Mean Time (Seconds)

C = 0.5 C = 0.9

ALS 0.2517 ± 0.0663 (180) (180) 13.8499 ± 5.8256 (106) (20)

NCG - βFR 0.9723 ± 0.3944 (180) (180) 9.5120 ± 6.7666 (94) (20)

PNCG - β̃FR 2.4235 ± 1.0916 (180) (180) 4.4674 ± 1.6256 (104) (20)

PNCG - β̂FR 3.0196 ± 1.8507 (179) (180) 7.1644 ± 5.4327 (106) (20)

NCG - βPR 0.5730 ± 0.3607 (180) (180) 7.0099 ± 4.3507 (83) (20)

PNCG - β̃PR 1.7628 ± 12.6569 (180) (180) 2.7751 ± 1.9319 (109) (20)

PNCG - β̂PR 1.2049 ± 2.0744 (180) (180) 4.1549 ± 5.0031 (108) (20)

NCG - βHS 0.5285 ± 0.3131 (180) (180) 6.9515 ± 4.6067 (85) (20)

PNCG - β̃HS 0.9940 ± 1.1962 (180) (180) 5.1334 ± 5.6721 (107) (20)

PNCG - β̂HS 1.4841 ± 3.4182 (180) (180) 5.5534 ± 12.4827 (108) (20)

when we look at the more difficult problem, C = 0.9. In this case, the PNCG algorithm
with the β̃PR variant is the fastest. The ALS algorithm is the slowest and for a given
formula for β, both PNCG algorithms are faster than the NCG algorithm by a factor
between 2 and 4: nonlinear preconditioning significantly speeds up the NCG algorithm.
The one exception is for R = 3 where the PNCG algorithm with β̃HS is slower than the
NCG algorithm. However, in this case the number of convergent runs for β̃HS is 100%
while only 92.78% of the runs for βHS are convergent. We also see from Tables 2.2 and
2.3 that the number of times each algorithm is able to recover the original factor matrices
successfully is approximately the same for each algorithm for a given combination of R
and C. In the case where R = 5 and C = 0.9, this number is quite low, however, these
results closely match the results found in [1] and we note that all of the successful runs
occur when there is very little noise (l1 = 1 and l2=0).

Returning to the timing results displayed in Tables 2.2 and 2.3, we recognize that
the results may be dominated by a small number of difficult problems. Even with fixed
problem parameters, a problem can be difficult (and require a large amount of iterations
to converge) or easy depending on the particular random realization of the test tensor
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and/or the initial guess. Including the standard deviation helps to describe the effects of
this bias; however, the timing results don’t account for the problems where the algorithm
fails to converge within the prescribed resource limit. One way to overcome this is to use
the performance profiles suggested by Dolan and Moré in [28].

Suppose that we want to compare the performance of a set of algorithms or solvers
S on a test set P. Suppose there are ns algorithms and np problems. For each problem
p ∈ P and algorithm s ∈ S let tp,s be the computing time required to solve problem p
using algorithm s. In order to compare algorithms we use the best performance by any
algorithm as a baseline and define the performance ratio as

rp,s =
tp,s

min{tp,s : s ∈ S}
. (2.63)

Although we may be interested in the performance of algorithm s on a given problem p,
a more insightful analysis can be performed if we can obtain an overall assessment of the
algorithm’s performance. We can do this by defining the following:

ρs(τ) =
1

np
size{p ∈ P : rp,s ≤ τ}. (2.64)

For algorithm s ∈ S, ρs(τ) is the fraction of problems p for which the performance ratio rp,s
is within a factor τ ∈ R of the best ratio (which equals one). Thus, ρs(τ) is the cumulative
distribution function for the performance ratio and we refer to it as the performance profile.
By visually examining the performance profiles of each algorithm we can compare the
algorithms in S. In particular, algorithms with large fractions ρs(τ) are preferred.

Since the performance profile, ρs : R 7→ [0, 1], is a cumulative distribution function it is
nondecreasing. In addition, it is a piecewise constant function, continuous from the right
at each breakpoint. The value of ρs at τ = 1 is the fraction of problems for which the
algorithm wins over the rest of the algorithms. In other words, ρs(1) is the fraction of wins
for each solver. For larger values of τ , algorithms with high values of ρs relative to the
other algorithms indicate robust solvers.

To examine the performance profiles of each algorithm more easily we group the NCG
and PNCG algorithms according to formula for βk+1, either FR, PR or HS. Thus

S1 = {ALS, NCG with βFR, PNCG with β̃FR, PNCG with β̂FR }, (2.65)

S2 = {ALS, NCG with βPR, PNCG with β̃PR, PNCG with β̂PR }, (2.66)

S3 = {ALS, NCG with βHS, PNCG with β̃HS, PNCG with β̂HS }. (2.67)
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Figure 2.1: Performance profiles for the algorithms in S1 with I = 20.

Figure 2.1 plots the performance profiles of the algorithms in S1. In Figure 2.1a, R = 3
and C = 0.5. This is an easy problem and from the performance profiles we can see that
not only is ALS the fastest it is also the most robust. We can increase the difficulty of
the problem by increasing the collinearity to 0.9 and Figure 2.1b shows the performance
profiles of each algorithm in S1 when C = 0.9. Since ρs(1) indicates what fraction of the

180 trials each algorithm is the fastest, we see that PNCG with β̃FR is the fastest algorithm
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in the largest percentage of runs. When τ = 3 approximately 70% of the 180 NCG runs
are within three times the fastest time and approximately 40% of the ALS runs are within
three times the fastest time. However, as τ increases to 10 we notice that approximately all
of the ALS and PNCG runs are within ten times the fastest time but only 90% of the NCG
runs are within ten times the fastest time. This suggests that the NCG algorithm without
nonlinear preconditioning is not nearly as robust as the other algorithms. In Figures 2.1c
and 2.1d, R = 5 and C = 0.5 and 0.9 respectively. For C = 0.5, the performance profiles
look similar in Figures 2.1a and 2.1c where R = 3 and 5 respectively. For C = 0.9, the
performance profiles in Figure 2.1b where R = 3 and Figure 2.1d where R = 5 differ,
however, in both cases, PNCG with β̃FR is the fastest in the largest percentage of runs
and NCG is the least robust algorithm having the smallest value at τ = 10.

Figures 2.2 and 2.3 plot the performance profiles for the algorithms in S2 and S3,
respectively. Once again we see similar results as those displayed in Figure 2.1.

Our next challenge is to examine the performance of the PNCG algorithm when we
increase the tensor size. To better understand the performance, we focus on the results
for the algorithms in S2 since the results are similar for the algorithms in S1 and S3. We
consider two different size parameters, I = 50 and I = 100. Table 2.4 reports the timing
results when I = 50 and Table 2.5 contains the results when I = 100. As we increase
the size of the tensors we see that the results remain similar to the case where I = 20.
Regardless of the rank, R, the easy problem for which the collinearity is 0.5, can easily
be solved by ALS. Again, when we move to the more difficult problem of C = 0.9, the
PNCG algorithms perform the best (except for I = 100 and R = 5). These results are
further reflected in the performance profiles shown in Figures 2.4 and 2.5. ALS dominates
regardless of rank and size when C = 0.5, but Figures 2.4b, 2.4d, 2.5b, and 2.5d suggest
that PNCG with the β̃PR variant is the fastest for C = 0.9 except when I = 100 and
R = 5, where ALS appears faster. The figures also indicate that the NCG algorithm
without nonlinear preconditioning is the least robust. In the case when I = 100, R = 5
and the collinearity is 0.9, we note that Table 2.5 shows that the ALS algorithm is the
fastest on average, while Figure 2.5d shows that the fastest run is most often for PNCG
with the β̃PR variant. Both variants of the PNCG algorithm are more robust than the
NCG algorithm, while ALS is the most robust in this case. So we can say that, while
PNCG appears significantly faster than ALS for all difficult (C = 0.9) problems when the
number of factors R and the tensor size I are relatively small, ALS becomes competitive
again with PNCG when R and I are large. Note, however, that the line search parameters
in the NCG and PNCG algorithms were the same for every problem, and it may be possible
to improve both the NCG and PNCG results by fine-tuning these parameters. We also
see from Tables 2.4 and 2.5 that the ability of NCG to successfully recover the original
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Figure 2.2: Performance profiles for the algorithms in S2 with I = 20.

factor matrices is less than both PNCG variants and ALS in some cases. When I = 50
and C = 0.9 the difference is small for both R = 3 and R = 5. The difference is more
significant when I = 100, C = 0.9 and R = 5, while there is no difference when R = 3. In
all cases, the number of successes is essentially the same for both variants of PNCG and
ALS. Thus, the main conclusion from our numerical tests is that nonlinear preconditioning
can dramatically improve the speed and robustness of NCG: PNCG is significantly faster
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and more robust than NCG for all difficult (C = 0.9) CP problems we tested.
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Figure 2.3: Performance profiles for the algorithms in S3 with I = 20.
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Table 2.4: Speed Comparison with I = 50.

Optimization Mean Time (Seconds)

Method C = 0.5 C = 0.9

R = 3

ALS 0.1988 ± 0.0368 (180) (180) 5.1981 ± 0.3444 (180) (180)

NCG - βPR 0.7170 ± 0.2830 (180) (180) 4.4516 ± 1.9664 (179) (171)

PNCG - β̃PR 0.8335 ± 0.9137 (180) (180) 1.6320 ± 1.1064 (180) (180)

PNCG - β̂PR 1.1722 ± 1.4899 (180) (180) 1.6676 ± 0.7855 (180) (180)

R = 5

ALS 0.3357 ± 0.1509 (180) (180) 10.4698 ± 3.0988 (159) (120)

NCG - βPR 1.6522 ± 1.2236 (180) (180) 14.6827 ± 10.1787 (142) (116)

PNCG - β̃PR 3.8331 ± 13.5605 (179) (179) 7.4386 ± 12.2583 (155) (120)

PNCG - β̂PR 6.1021 ± 26.0100 (179) (180) 10.4150 ± 25.0737 (156) (120)

Table 2.5: Speed Comparison with I = 100.

Optimization Mean Time (Seconds)

Method C = 0.5 C = 0.9

R = 3

ALS 1.9006 ± 0.7043 (180) (180) 47.3505 ± 4.3030 (180) (180)

NCG - βPR 14.3840 ± 6.1019 (180) (180) 94.9786 ± 89.6489 (180) (180)

PNCG - β̃PR 15.3848 ± 24.8887 (180) (180) 28.2346 ± 30.9428 (180) (180)

PNCG - β̂PR 20.8161 ± 31.6531 (180) (180) 34.8675 ± 46.9708 (180) (180)

R = 5

ALS 1.9770 ± 0.4002 (180) (180) 57.1086 ± 5.5332 (180) (179)

NCG - βPR 14.8031 ± 6.2776 (180) (180) 124.5449 ± 95.9350 (178) (138)

PNCG - β̃PR 44.2358 ± 205.5225 (180) (179) 103.7680 ± 257.0952 (178) (178)

PNCG - β̂PR 66.7177 ± 157.0857 (180) (180) 151.7887 ± 356.2924 (180) (179)
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Figure 2.4: Performance profiles for the algorithms in S2 with I = 50.

2.5 Conclusion

We have proposed an algorithm for computing the canonical rank-R tensor decomposi-
tion that applies ALS as a nonlinear preconditioner to the nonlinear conjugate gradient
algorithm. We consider the ALS algorithm as a preconditioner because it is the standard
algorithm used to compute the canonical rank-R tensor decomposition but it is known to
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Figure 2.5: Performance profiles for the algorithms in S2 with I = 100.

converge very slowly for certain problems, for which acceleration by NCG is expected to be
beneficial. We have considered several approaches for incorporating the nonlinear precondi-
tioner into the NCG algorithm that have been described in the literature [9, 24, 70, 106, 17],
corresponding to two different sets of preconditioned formulas for the standard FR, PR and
HS update parameter, β, namely the β̃ and β̂ formulas. If we use the β̂ formulas and apply
the PNCG algorithm using an SPD preconditioner to a convex quadratic function using
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an exact line search, then the PNCG algorithm simplifies to the PCG algorithm. Also, we
proved a new convergence result for one of the PNCG variants under suitable conditions,
building on known convergence results for non-preconditioned NCG when line searches are
used that satisfy the strong Wolfe conditions. Note that it is very easy to extend existing
NCG software with the nonlinear preconditioning mechanism. Our simulation code and
examples can be found at www.math.uwaterloo.ca/~hdesterc/pncg.html.

Following the methodology of [98] we create numerous test tensors and perform exten-
sive numerical tests comparing the PNCG algorithm to the ALS and NCG algorithms. We
consider a wide range of tensor sizes, ranks, factor collinearity and noise levels. Results
in [1] showed that ALS is normally faster than NCG. In this chapter, we show that NCG
preconditioned with ALS (or, equivalently, ALS accelerated by NCG) is often significantly
faster than ALS by itself, for difficult problems. For easy problems, where the collinearity
is 0.5, ALS outperforms all other algorithms. However, when the problem becomes more
difficult and the collinearity is 0.9, the PNCG algorithm is often the fastest algorithm. The
only case where ALS is faster is when we consider our largest tensor size and highest rank.
The performance profiles of each algorithm also show that for the more difficult problems,
PNCG is consistently both more robust and faster than the NCG algorithm. For our op-
timization problems, we generally obtain convergent results for all of the six variants of
the PNCG algorithm we considered. It is interesting that for the PDE problems of [17],

out of the β̃ variants, only β̃PR was found viable. It appears that the β̂ variants were not
investigated in [17]. We did find for our test tensors that the β̃PR formula, which does not
reduce to PCG in the linear case, converges the fastest for most cases.

The PNCG algorithm discussed in this chapter is formulated under a general frame-
work. While this approach has met with success previously in certain application areas
[9, 24, 70, 106, 17] and may offer promising avenues for further applications, it appears
that the nonlinearly preconditioned NCG approach has received relatively little attention
in the broader community and remains underexplored both theoretically and experimen-
tally. It will be interesting to investigate the effectiveness of PNCG for other nonlinear
optimization problems. Other nonlinear least-squares optimization problems for which
ALS solvers are available are good initial candidates for further study. In fact, in the
next chapter we explore we how to use the PNCG algorithm to accelerate the convergence
of ALS-based optimization methods for collaborative filtering models where collaborative
filtering algorithms are important building blocks in many practical recommendation sys-
tems. However, as with PCG for SPD linear systems [92, Chapter 10], it is fully expected
that devising effective preconditioners for more general nonlinear optimization problems
will be highly problem-dependent while at the same time being crucial for gaining sub-
stantial performance benefits.
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Chapter 3

A Nonlinearly Preconditioned
Conjugate Gradient Algorithm for
Recommendation Systems

3.1 Introduction and Background

Recommendation systems are designed to analyze available user data to recommend items
such as movies, music, or other goods to consumers, and have become an increasingly
important part of most successful online businesses. One strategy for building recommen-
dation systems is known as collaborative filtering whereby items are recommended to users
by collecting preferences or taste information from many users. Collaborative filtering
methods provide the basis for many recommendation systems [14] and have been used by
online businesses such as Amazon [64], Netflix [10], and Spotify [50].

Most collaborative filtering methods can be classified as either one of two types: neigh-
borhood methods or latent factor models. Originally, neighborhood methods estimated
unknown ratings using the ratings of similar users [47]. However, an item-oriented ap-
proach was later proposed as an alternative [93, 64] whereby ratings are estimated using
the known ratings made by the same user on similar items. Not only are these item-
oriented methods more accurate, they may scale better [11, 93, 96] and they provide a
better explanation of user behavior since users are familiar with items previously preferred
by them but do not know the users similar to them as assumed under the user-oriented
approach. Latent factor models offer an alternative approach to collaborative filtering. In
a latent factor model the user ratings are used to characterize both users and items in
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terms of latent features or factors. For movies, for example, a latent factor might measure
the degree to which a movie is a comedy versus a drama and might quantify how much a
user prefers comedies over dramas.

Low-rank matrix factorizations are the simplest means of realizing a latent factor model
and while no method appears to be optimal on its own, low-rank matrix factorizations have
repeatedly demonstrated better accuracy than other methods such as nearest neighbor
models and restricted Boltzmann machines [10, 29]. The goal of low-rank matrix factor-
ization is to determine from the user-item ratings matrix, R, low-rank user (U) and item
(M) matrices in which each row in these matrices represents a latent feature or factor of
the data and R ≈ UTM. Once the user and item matrices are computed, they are used
to build the recommendation system. In the simplest case, the product of U and M is
used to predict unknown ratings. Regardless, computing user and item matrices is the first
step in building a variety of recommendation systems, so computing the factorization of R
quickly is important.

The matrix factorization problem is closely related to the singular value decomposition
(SVD), but the SVD can only be applied to matrices with no missing values. However,
since R ≈ UTM, one way to find the user and item matrices is by minimizing the squared
difference between the approximated and actual value for the known ratings in R. Minimiz-
ing this difference is typically done by one of two algorithms: stochastic gradient descent
or alternating least squares (ALS) [59]. Stochastic gradient descent, popularized by Funk
[39], is relatively easy to implement. ALS can be easily parallelized and can efficiently han-
dle models that incorporate implicit data [49], but it is well-known that ALS can require
a large number of iterations to converge. Thus, we propose using the PNCG algorithm
introduced in the previous chapter with ALS as the nonlinear preconditioner to compute
the user and item matrices to significantly improve the convergence speed relative to the
ALS algorithm. We demonstrate that PNCG with ALS as a nonlinear preconditioner can
significantly improve the convergence speed by testing both the ALS and PNCG algorithms
on a movie ratings matrix from MovieLens [75]. We show that the PNCG algorithm sig-
nificantly improves convergence speed using two different measures of convergence. One
is the traditional measure from optimization, the gradient norm of the objective function,
where a method is said to converge if the gradient norm is zero to a specified tolerance.
The second is a measure based on the rankings of the predicted ratings.

The rest of the chapter is organized as follows. In Section 3.2 we present a detailed
problem formulation. In Section 3.3, we present the ALS algorithm for collaborative fil-
tering and a very brief review of the PNCG algorithm. In Section 3.4, we compare the
performance of the ALS and PNCG algorithms. In Section 3.5, we conclude.

38



3.2 Problem Description

The optimization approach we present in this chapter is in principle applicable to any
collaborative filtering model that uses ALS. For definitiveness, we choose a specific latent
factor model, the matrix factorization model from [59] and [105], and implement our ap-
proach for this model. Given the data we use, we present the model in terms of users and
movies instead of the more generic users and items framework.

Let the matrix of user-movie rankings be represented by R = {rij}nu×nm where rij is
the rating given to movie j by user i, nu is the number of users and nm is the number of
items. Note that for any user i and movie j the value of rij is either a real number or is
missing, where a vast number of values are usually missing. For example, the MovieLens
20M dataset [75] with 138,493 users and 27,278 movies contains only 20 million rankings,
which accounts for less than 1% of the total possible rankings. In the low-rank factorization
of R, each movie j is associated with a vector mj ∈ Rnf , j = 1, . . . , nm and each user i is
associated with a vector ui ∈ Rnf , i = 1, . . . , nu. The elements of mj measure the degree
that movie j possesses each factor or feature and ui similarly measures the degree that
user i possesses each factor or feature. The dot product, uTi mj captures the interaction
between user i and movie j and is an approximation of user i’s rating of movie j which
we denote r̂ij (i.e. r̂ij = uTi mj). Let U = [ui] ∈ Rnf×nu be the user feature matrix and
M = [mj] ∈ Rnf×nm the movie feature matrix. Our goal is to map the ratings matrix R to
UTM. The challenge of computing the matrices U and M is accomplished by minimizing
the following mean-squared loss function:

Lλ(R,U,M) =
1

n

∑

(i,j)∈I

(rij − uTi mj)
2+

λ(
∑

i

nui‖ui‖2 +
∑

j

nmj‖mj‖2),
(3.1)

where I is the index set of known ratings and has size n, nui denotes the number of ratings of
user i and nmj is the number of ratings of movie j. The term λ(

∑
i nui‖ui‖2+

∑
j nmj‖mj‖2)

is a Tikhonov regularization [97] term commonly included in the loss function to prevent
overfitting [105]. The full optimization problem can be stated as follows,

min
U,M
Lλ(R,U,M). (3.2)

There are numerous algorithms available to solve the optimization problem in (3.2) and as
mentioned previously ALS and stochastic gradient descent are the most popular. We will
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propose using the PNCG algorithm with ALS as a preconditioner, and will show that it
converges much faster than ALS.

The model represented by the loss function in Equation (3.1) is very simple. Koren,
Bell and Volinsky [59] provide an overview of some extensions to the basic model including
models that incorporate bias, include implicit feedback and add temporal dynamics. In
all of these models, a prediction rule for r̂ij is derived, where r̂ij = uTi mj in the model we
examine. The objective in each model is to find the unknown parameters in the model
and for each model we do so by minimizing the mean squared error between the known
ratings and the prediction (possibly including a regularization term in the loss function to
prevent overfitting). Thus, our approach has broad applicability, since ALS and our PNCG
algorithm can also be used to find the unknown parameters in these more sophisticated
models.

3.3 Optimization Algorithms

Before presenting the PNCG algorithm we begin by describing the standard ALS algorithm
used to solve the optimization problem described in (3.2).

3.3.1 Alternating Least Squares Algorithm

The optimization problem in (3.2) is not convex. However, if we fix one of the unknowns,
either U or M, then the optimization problem becomes quadratic and we can solve for the
remaining unknown by solving the least squares problem. This is the central idea behind
ALS. To find a solution to the optimization problem given in (3.2) we start by initializing
M with random values. Then, we can fix M and solve for U by minimizing Equation (3.1).
The next step is to fix U and solve for M by minimizing Equation (3.1). We can repeat
these alternating steps until we have reached a specified stopping criteria.

The primary work in the ALS algorithm is in finding the least squares solution to
Equation (3.1) for each of the unknowns. Consider the case where M is fixed and we are
seeking the least squares solution to Equation (3.1) for U. We can determine the solution
to Equation (3.1) by setting all the elements of the gradient of Equation (3.1) equal to
zero. The elements of the gradient of Equation (3.1) are given by the partial derivatives,
∂Lλ
∂uki

, where uki is the (k, i)th element of U, k = 1 . . . , nf , i = 1, . . . , nu. Setting all the
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partial derivatives to zero gives the following solution for U,

∂Lλ
∂uki

= 0, ∀ i, k

⇒
∑

j∈Ii

2(uTi mj − rij)mkj + 2λnuiuki = 0, ∀ i, k

⇒
∑

j∈Ii

mkju
T
i mj + λnuiuki =

∑

j∈Ii

mkjrij, ∀ i, k

⇒ (MIiM
T
Ii + λnuiI)ui = MIiR

T (i, Ii), ∀ i
⇒ ui = A−1i Vi, ∀ i

(3.3)

where Ai = MIiM
T
Ii + λnuiI, vi = MIiR

T (i, Ii) and I is the nf × nf identity matrix. The
elements of M are represented by mkj, k = 1, . . . , nf , j = 1, . . . , nm, Ii is the index set of
movies user i has rated, and MIi represents the sub-matrix of M where columns j ∈ Ii
are selected. Similarly, R(i, Ii) is a row vector that represents the ith row of R with only
the columns in Ii included. We get a similar solution for the columns of M when we fix
U and find the least squares solution to Equation (3.1) for M:

mi = A−1j vj, ∀ j (3.4)

where Aj = UIjU
T
Ij + λnmjI, vj = UIjR(Ij, j). Ij is the index set of users that have

rated movie j, UIj represents the sub-matrix of U where columns i ∈ Ij are selected, and
R(Ij, j) is a column vector that represents the jth column of R with only the rows in Ij
included.
Algorithm 4 summarizes the ALS algorithm used to solve the optimization problem given
in (3.2). From Algorithm 4 we note that each of the columns of U, and the columns
of M, can be computed independently. This suggests an easy way for the algorithm to
be implemented in parallel as is done in [105]. However, the algorithm can still require
many iterations to converge and we propose using ALS as a preconditioner in the PNCG
algorithm to improve convergence speed.

3.3.2 PNCG Algorithm

The PNCG algorithm we use to find an optimal solution to the problem in (3.2) is given
by Algorithm 3 from the previous chapter where xT =

[
uT1 uT2 . . .u

T
nu mT

1 mT
2 . . .m

T
nm

]
∈

Rnf×(nu+nm) and xk = P (xk) denotes one iteration of the ALS algorithm described in Algo-
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Algorithm 4: Alternating Least Squares Algorithm (ALS)

Initialize M with random values;
while Stopping criteria have not been satisfied do

for i = 1, . . . , nu do
ui ← A−1i vi;

end
for i = 1, . . . , nm do

mi = A−1j vj;

end

end

rithm 4. Note, that we only consider one possibility for βk+1 in our numerical experiments:

β̂PRk+1 =
gTk+1(gk+1 − gk)

gTk gk
, (3.5)

where we note that if the given expression for βk+1 is used in Algorithm 3 and we applied
Algorithm 3 to a convex quadratic problem with an exact line search with P a precondi-
tioning matrix, P, then Algorithm 3 would be equivalent to the preconditioned conjugate
gradient algorithm with the same preconditioner.

The primary computational cost in Algorithm 3 comes from computing the ALS iter-
ation, P (xk), and from computing αk, the line search parameter. To compute αk we use
a line search algorithm. An exact line search algorithm would find the αk that minimizes
f(xk + αkpk). However, this can require a large number of iterations so most line search
algorithms try to efficiently find an αk that moves the solution towards convergence. These
algorithms typically require both function and gradient evaluations to find the best αk and
we can see from the computations in (3.3) that calculating the gradient is less expensive
than an ALS iteration since we don’t need to find the inverse of a matrix to compute the
gradient. Thus, if we don’t require a large number of iterations to determine αk then using
the PNCG algorithm with ALS as a preconditioner doesn’t increase the computational
cost per iteration by too much relative to the ALS algorithm. However, this small addi-
tional cost per iteration may be warranted if it leads to a large decrease in the number of
iterations required for convergence. As in the previous chapter, we use the Moré-Thuente
[74] line search algorithm which is designed to satisfy the strong Wolfe conditions, which
consist of a sufficient decrease condition and a curvature condition.
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3.4 Numerical Experiments

We analyze the performance of the ALS and PNCG algorithm by examining their per-
formance on the MovieLens [75] data. The entire MovieLens data set has 138,493 users
and 27,278 movies and just over 20 million ratings where each user has rated at least 20
movies. Note that there are some movies with no ratings and if we only consider movies
with at least one rating then there are 26,744 movies. We will consider subsets of the data
and examine how the algorithms perform as we increase the size of the ratings matrix.
In creating our subsets we try to exclude outlier users; users with either a large number
of movie ratings or a very small number of movie ratings. As an example of how we do
this, suppose we want to create a subset of ratings with 100 users and 20 movies. We
begin by creating a sorted list of the users based on the number of movies they have rated
(descending order). The user in the middle of this list, user c, has the median number of
ratings. We then include users c− 50 to c+ 49 from the sorted list in our sample. Once we
have chosen the users, we use the same process to determine the movies based on ratings
given by our chosen users.

All numerical experiments were performed on a Linux Workstation with a Quad-Core
Intel Xeon 3.16GHz processor and 8GB RAM. For the PNCG algorithm we use the Moré-
Thuente line search algorithm from the Poblano toolbox for MATLAB [30]. The line search
parameters are as follows: 10−4 for the sufficient decrease condition tolerance, 10−2 for the
curvature condition tolerance, an initial step length of 1 and a maximum of 20 iterations.
The gradient norm is used as a stopping criteria for both ALS and PNCG but since the
gradient is not used in the calculation of the ALS algorithm, the calculation of the gradient
is not included in the timing results for the ALS algorithm. The stopping conditions shared
by both ALS and PNCG are as follows: 10−6 for the gradient norm divided by the number
of variables, (nm + nu)× nf , and 104 for the maximum number of iterations. In addition,
PNCG has a maximum set on the total number of function evaluations equal to 107.

For our tests we consider ratings matrices of 6 different sizes: nu × nm = 100 × 20,
200 × 40, 400 × 80, 800 × 160, 1600 × 320 and 3200 × 640, where nu is the number of
users and nm is the number of movies. For each ratings matrix, ALS and PNCG are used
to solve the optimization problem in (3.2) with λ = 0.1 and nf = 10 and the algorithms
are run using 20 different random starting values until one of the stopping criteria is
reached. Note that for each ratings matrix, the 20 starting values are the same for ALS
and PNCG. In Table 3.1 we summarize the timing results for the different problem sizes.
The time is written in the form a ± b where a is the mean time in seconds and b is the
standard deviation. Runs that do not converge based on the gradient norm tolerance are
not included in the mean and standard deviation calculations; the only run that did not
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converge to the specified gradient norm tolerance before reaching the maximum number
of iterations was a 1600× 320 ALS run. In the third column of Table 3.1 we calculate the
acceleration factor of PNCG. The value is simply the mean time for convergence of ALS
divided by the mean time for convergence of PNCG. We see from this table that PNCG
significantly improves the convergence speed of the ALS algorithm for all problem sizes.
Similarly, Table 3.2 summarizes the number of iterations required to reach convergence for
each algorithm. Again, the results are calculated based on converged runs only. In the
third column of Table 3.2 we calculate the acceleration factor of PNCG based on iteration
count and we see that PNCG also significantly improves convergence in terms of iteration
count.

Table 3.1: Timing Results of ALS and PNCG for different problem sizes (Mean Time in
Seconds).

Problem Size Time (Seconds) Acceleration

nu × nm ALS PNCG Factor

100× 20 8.32 ± 3.87 1.95 ± 0.59 4.27

200× 40 19.80 ± 10.25 4.52 ± 1.30 4.38

400× 80 56.50 ± 38.06 12.22 ± 4.25 4.62

800× 160 162.0 ± 89.94 47.57 ± 20.02 3.41

1600× 320 330.61 ± 120.3 116.2 ± 31.56 2.84

3200× 640 960.8 ± 364.0 303.7 ± 111.3 3.16

Table 3.2: Iteration Results of ALS and PNCG for different problem sizes.

Problem Size Iterations Acceleration

nu × nm ALS PNCG Factor

100× 20 1326 ± 622.4 105.7 ± 29.4 12.54

200× 40 1574 ± 814.1 125.2 ± 35.3 12.58

400× 80 2181 ± 1466 158.8 ± 54.3 12.74

800× 160 3048 ± 1689 290.4 ± 128.1 10.50

1600× 320 3014 ± 1098 302.9 ± 86.3 9.95

3200× 640 4231 ± 1602 329.6 ± 127.5 12.84

From Tables 3.1 and 3.2 it is clear that PNCG accelerates the convergence of the ALS
algorithm, using the gradient norm as the measure of convergence. However, since we are
also interested in using the factor matrices, U and M, generated by each algorithm, to
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make recommendations we would also like to examine the convergence of the algorithms
using these recommendations. Rather than examine the full recommendations themselves
(i.e. R̂ = UTM), we consider the rankings. In particular, we are interested in the rankings
of the top t movies (e.g. top 20 movies) for each user. We want to explore how these
rankings change as we increase the number of iterations of both ALS and PNCG. If the
rankings of the top t movies for each user do not change after a small number of iterations
then we can say that this algorithm computes an accurate solution, for the purposes of
providing accurate recommendations, quickly. Thus, predicted user movie rankings can
provide us with an additional measure by which to determine how quickly ALS and PNCG
converge. Our ranking accuracy metric will be an average across users. For each user, we
will use a modified version of the Kendall-Tau [52] distance to determine how close two
different movie rankings are. The Kendall-Tau distance computes the difference between
two ranking vectors based on the entire vector and we modify the formula to instead
compute the difference between ranking vectors based only on the rankings of the top t
items. Suppose we want to compare two different movie rankings for a single user. Let p1

and p2 be two different rankings of movies for user i. Our ranking measure is based on
computing the number of inversions or switches required to turn p2 into p1 but only for the
top t movies. We begin by finding the top t movies in p1. Then for each of those movies we
determine what rank they have in p2 and see how many inversions are required in p2 so that
movie has the same rank in p1. Consider the following example, where p1 = [3, 4, 2, 5, 6, 1],
and p2 = [6, 3, 1, 2, 4, 5]. So in p1, user i ranks movie 6 highest, p1(6) = 1, and in p2, user
i ranks movie 3 highest, p2(3) = 1. Suppose we are only interested in the rankings of the
top 2 movies. To compute our ranking metric we first need to find the top ranked movie in
p1 which we’ve already stated is movie 6. However, in p2, movie 6 is ranked 5th. We need
to compute the number of inversions required to move the rank of movie 6 from 5th to 1st
which in this case is 4. We then need to find the 2nd highest ranked movie in p1 which
is movie 3. In p2 movie 3 is ranked 1st. We need to compute the number of inversions
required to move the rank of movie 3 from 1st to 2nd. However, in our first step we moved
movie 6 from 5th to 1st using inversions so p2 is actually now p̃2 = [6, 4, 2, 3, 5, 1] and
movie 3 is already in 2nd so we don’t need to make any inversions. So the total number of
switches required to match p2 to p1 for the top 2 rankings is s = 4. We want to normalize
our ranking metric to have a value of 1 if no inversions are needed (i.e. p1 = p2 in the top t
spots) and 0 if the maximum number of inversions are needed. To calculate the maximum
number of inversions we note that this occurs if p2 is in the exact opposite order from p1.
In this case, nm− 1 inversions are needed in the first step, nm− 2 inversions in the second
step and so on until we need to make nm−t inversions in the t-th step. Thus the maximum
number of inversions, is smax = (nm− 1) + (nm− 2) + . . .+ (nm− t) = t

2
(2nm− t− 1) and
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our ranking accuracy metric for a given user i is

qi = 1− s

smax
, (3.6)

and in our example qi = 1− 4
9

= 5
9
. To calculate the total ranking accuracy metric we take

the average value of qi across all users.

We can use this ranking metric to evaluate the accuracy of ALS and PNCG as a
function of the number of iterations and runtime. Suppose we take the final solution of a
given algorithm, where convergence to a final solution is determined by the gradient norm,
and then use the factor matrices to generate predictions, R̂ = UTM. Then based on these
predictions we can also generate a final ranking vector for each user, pi, i = 1, . . . , nu. We
can also consider the predictions generated at every iteration k of the algorithm, R̂k =
UT
kMk and generate a ranking vector, pi,k for each user. We can then use pi,k and pi

to compute our ranking metric. Note that pi is computed with high accuracy but can
potentially be different for each optimization method. In our numerical experiments, pi is
the ranking vector generated when the normalized gradient norm is less than or equal to
10−6 for each method. This gives us a measure of how close to convergence each iteration
is in terms of our desired ranking. If the ranking metric for iteration k is x then we say
that at iteration k the algorithm has reached x% ranking accuracy.

Tables 3.3, 3.4, 3.5 and 3.6 summarize the time needed for each algorithm to reach a
certain level of ranking accuracy for ratings matrices with different sizes. Note that in all
4 cases we are comparing the top 20 movie rankings for each user. Once again we use 20
different random starting values so the time is written in the form a ± b where a is the
mean time in seconds and b is the standard deviation. To better understand the tables,
consider Table 3.3. The first entry of the first column displays the time needed for ALS
to get a ranking accuracy of 70% or a ranking metric equal to 0.7 (i.e. the time needed
for ALS to compute k iterations where k is the first iteration where the average qi across
users is greater than or equal to 0.7). In general, we can see that PNCG reaches a certain
level of accuracy in less time than ALS. In the third column of Tables 3.3, 3.4, 3.5 and 3.6
we have computed the acceleration factor of PNCG. We note that at 70% accuracy this
value is less than 1 for all problem sizes which implies that ALS is faster at reaching 70%
accuracy for all problem sizes. However, if we want a more accurate solution then PNCG
is much faster than ALS. We can also see this from Figure 3.1 which shows the average
time needed for both algorithms to reach a given ranking accuracy for the 400× 80 ratings
matrix. We see that both ALS and PNCG reach a ranking accuracy of approximately 75%
very quickly. However, it then takes ALS a long time to increase the ranking accuracy
from 75% to 100% while the time need for PNCG to increase the ranking accuracy from
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75% to 100% is much smaller. For example, PNCG reaches 90% ranking accuracy in about
7 seconds whereas standalone ALS needs about 37 seconds.

Table 3.3: Ranking Accuracy Timing Results. Problem Size: 100× 20

Ranking Time (Seconds) Acceleration

Accuracy ALS PNCG Factor

70% 0.17 ± 0.09 0.18 ± 0.04 0.93

80% 1.60 ± 1.70 0.59 ± 0.40 2.71

90% 4.83 ± 3.05 1.19 ± 0.72 4.05

100% 15.18 ± 7.44 2.24 ± 0.72 6.78

Table 3.4: Ranking Accuracy Timing Results. Problem Size: 200× 40

Ranking Time (Seconds) Acceleration

Accuracy ALS PNCG Factor

70% 0.27 ± 0.11 0.38 ± 0.12 0.72

80% 4.72 ± 8.07 1.36 ± 0.87 3.47

90% 12.49 ± 13.06 2.62 ± 1.30 4.77

100% 34.67 ± 18.02 5.07 ± 1.57 6.83

Table 3.5: Ranking Accuracy Timing Results. Problem Size: 400× 80

Ranking Time (Seconds) Acceleration

Accuracy ALS PNCG Factor

70% 0.37 ± 0.17 0.65 ± 0.16 0.58

80% 7.88 ± 7.03 2.87 ± 1.72 2.74

90% 37.08 ± 37.62 6.92 ± 4.47 5.36

100% 101.29 ± 68.04 14.07 ± 5.25 7.20

3.5 Conclusion

In this chapter, we have demonstrated how the PNCG algorithm with ALS as a nonlinear
preconditioner can significantly improve the convergence speed of ALS-based collaborative
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Table 3.6: Ranking Accuracy Timing Results. Problem Size: 800× 160

Ranking Time (Seconds) Acceleration

Accuracy ALS PNCG Factor

70% 0.76 ± 0.34 1.43 ± 0.35 0.53

80% 19.83 ± 13.67 12.61 ± 10.13 1.57

90% 103.91 ± 70.97 33.25 ± 22.34 3.12

100% 310.98 ± 168.67 59.88 ± 28.20 5.19
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Figure 3.1: Average ranking accuracy versus time for problem size: 400× 80

filtering algorithms. We showed this in the context of a simple latent factor model, but our
acceleration approach can be used with any collaborative filtering model that uses ALS. We
expect that our acceleration approach will be especially useful for advanced ALS-based col-
laborative filtering methods that achieve low Root Mean Square Error (RMSE), since these
methods require solving the optimization problem accurately, and that is precisely where
accelerated PNCG shows the most benefit over standalone ALS. For example, it would
be straightforward to extend our approach to the ALS-based implicit feedback algorithm
of [49].
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Chapter 4

An In-Depth Analysis of the
Chung-Lu Model

4.1 Introduction

In very simple terms a network can be defined as a collection of points joined together
by lines. Thus, networks can be used to represent connections between entities in a wide
variety of fields including engineering, science, medicine, and sociology. Many large real-
world networks share a surprising number of properties, leading to model development
research whereby formal models are developed to describe real-world networks. These
formal models often have associated algorithms which allow us to generate instances of
these models to compare with real networks. However, in other cases, an algorithm or
procedure will be developed to generate a synthetic graph, a graph designed to match many
of the properties of a real-world network, where the underlying model may not be explicitly
defined. These algorithms or generative processes are often referred to as graph generators.
Modeling real-world networks either with a formal model or a generative process serves two
purposes. First, building models that mimic the patterns and properties of real networks
helps to understand the implications of these patterns and helps determine which patterns
are important. If we develop a generative process to synthesize networks we can also
examine which growth processes are plausible and which are not. Secondly, high-quality,
large-scale network data is often not available, because of economic, legal, technological,
or other obstacles [19]. Thus, there are many instances where the systems of interest
cannot be represented by a single real-world network. As one example, consider the field of
cybersecurity, where systems require testing across diverse threat scenarios and validation
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across diverse network structures. In these cases, where there is no single exemplar network,
the systems must instead be modeled as a collection of networks in which the variation
among them may be just as important as their common features. By modeling these
networks either using a formal model or a practical graph generator, we can create synthetic
networks that capture both the essential features of a system and the realistic variability.
Then we can use such synthetic graphs to perform tasks such as simulations, analysis,
and decision making. For example, we can use these synthetic networks to examine how
diseases propagate through a population. We can also use synthetic graphs to test the
performance of graph analysis algorithms, including clustering algorithms and anomaly
detection algorithms.

One of the most well-known formal graph models is the Erdős Rényi random graph
model [33]. In the classic Erdős Rényi random graph model each edge is chosen with
uniform probability and the degree distribution is binomial, limiting the type of graphs
that can be modeled using the Erdős Rényi framework [80, p. 424]. The Chung-Lu model
[4, 22, 23] is an extension of the Erdős Rényi model that allows for more general degree
distributions. The probability of each edge is no longer uniform and is a function of a
user-supplied degree sequence, k = (k1, . . . , kn), where ki is the user-supplied degree of
node i and n is the number of nodes in the graph. By design the user-supplied degree
sequence is equal to the expected degree sequence of the model (i.e E(Di) = ki where
Di is the degree of node i in the model). This property makes it an easy model to work
with theoretically and since the Chung-Lu model is a special case of a random graph
model with a given degree sequence, many of its properties are well known and have been
studied extensively [22, 23, 104, 71, 73]. It is also an attractive model for many real-world
networks, particularly those with power-law degree distributions and it is sometimes used
as a benchmark for comparison with other graph models despite some of its limitations
[94, 86]. We know for example, that the average clustering coefficient is too low relative
to most real world networks. As well, measures of degree affinity are also too low relative
to most real-world networks of interest. However, despite these limitations or perhaps
because of them, the Chung-Lu model is often used as a basis for comparing new graph
models and generators.

To compare the Chung-Lu model to other graph models or graph generators we often use
instances of the models or generators we are interested in. However, the standard algorithm
used to generate instances of the Chung-Lu model has a runtime that isO(n2) where n is the
number of nodes in the original graph. Thus, if we are dealing with a very large graph this
algorithm can be prohibitively expensive. Miller and Hagberg [67] introduce an algorithm
with expected runtime that is O(n + m) where m is the expected number of edges of the
model. They argue that for graphs with finite average degree n = O(m) and the expected
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runtime is O(n). As part of their Block Two-Level Erdős Rényi graph generator, Kolda et
al. [94, 58] introduce a Fast Chung-Lu algorithm with an expected runtime of O(m) where
m, in this case, is the number of edges in the original graph. They claim that their Fast
Chung-Lu algorithm generates instances of the Chung-Lu model. In [58], the authors do
note that in their Fast Chung-Lu algorithm, duplicate edges and self-edges may be created,
but that they simply discard these edges, stating that in their experiments the practical
impact was small. In this chapter, we are interested in examining the impact of discarding
these edges. What we discover is that by removing these duplicate edges and self-edges
the Fast Chung-Lu algorithm does not actually generate instances of the Chung-Lu model,
but instead generates instances of a different model, one that is an approximation to the
true Chung-Lu model. We will present this new model, which we refer to as either the
O(|Edges|) or O(m) Chung-Lu model, and examine the size of the approximation error
and determine how different factors can affect it. Pfeiffer et al. [85] also note the bias in
networks generated using the Fast Chung-Lu algorithm however we provide a much more
in-depth analysis of this approximation bias. In particular, since the original Chung-Lu
model allows for self-edges we are interested in examining the approximation error as a
result of removing self-edges separately from the impact of removing duplicate edges. Table
4.1 summarizes our initial results where the Bernoulli Chung-Lu (BCL) model refers to the
original Chung-Lu model, for reasons that will become apparent in the next section, and
the O(m) Chung-Lu (MCL) model describes the model that the Fast Chung-Lu algorithm
generates instances of, the approximation to the BCL model. As shown in Table 4.1
models with and without the possibility of generating self-edges are treated separately
which results in a total of 4 different models to compare. For each model, we compare
the occurrence probability of an edge with two distinct endpoint nodes and the occurrence
probability of a self-edge where the endpoint nodes are the same. We also compare the
expected degree. As we mentioned previously, in the BCL model with self-edges, the model
originally presented by Chung and Lu, the expected degree, E(Di), of each node i is equal
to the input degree, ki, of node i. This property does not hold for each of the subsequent
models we explore so we present in Table 4.1 the formula for the expected degree, which
we derive in detail later in this chapter.

Table 4.1 summarizes the properties of 4 different models and in the following sections
we present these models and derive the probabilities of edges and the expected degree.
Note that in all of our discussions we will only be concerned with undirected, connected
graphs although much of the analysis does not require the graph to be connected. We begin
our discussion by presenting the BCL model and we describe the standard O(n2) algorithm
that can be used to generate instances of this model. We calculate the expected degree for
each node and using the degree sequence from a real-world network we compute instances
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of the model to demonstrate numerically that for each node, the degree average approaches
the expected degree as the number of instances grows, as is predicted by the law of large
numbers. In Section 4.3, we present the MCL model, a new model and the model that the
Fast Chung-Lu algorithm from [94, 58] actually generates instances of. Using the degree
sequence from a real-world network we demonstrate numerically the differences between
the MCL model and the BCL model. In Section 4.4 we explore how removing self-edges
from both the BCL and MCL models leads to new models and impacts the properties of
these model as compared to the BCL and MCL models with self-edges.

As we will see in Sections 4.2 and 4.4, one of the assumptions made in both BCL models
is that k2i ≤ 2m ∀ i, where m is the number of edges in the graph. However, there are many
real-world graphs for which this condition does not hold. In Section 4.5 we explore how the
properties of both the BCL and the MCL models change when this constraint is violated.
In the case of the BCL models, the models actually have to be extended which leads to two
additional BCL models. Finally, in Section 4.6 we focus on another network property that
is often important when modeling networks, the triangle count and the related clustering
coefficient. We calculate the expected triangle count for the various Chung-Lu models
we have presented and show how these values are different from the values found in real
networks.

4.2 Bernoulli Chung-Lu Model

In the model originally presented by Chung and Lu, as previously mentioned, each edge
is chosen with a different probability. As such, each edge can be represented as a random
variable and we can formally define the probability distribution for each edge. Edges
between two distinct nodes can be represented as Bernoulli random variables and this is
why we refer to this model as the Bernoulli Chung-Lu model. Written in terms of the
graph adjacency matrix, we have

Aij ∼ Bernoulli(pij), 1 ≤ i < j ≤ n, Aji = Aij. (4.1)

For self-edges, the probability distribution is more general although it is very similar to
the Bernoulli distribution. Written in terms of the adjacency matrix, self-edges, Aii, i =
1, . . . , n, can be defined as random variables with support, S(Aii) = {0, 2}, and probability
mass function given by the following

P (Aii = aii) =





1− pii aii = 0,

pii aii = 2,
(4.2)
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Probability Probability Expected Degree

of Edge (i, j) of Edge (i, i) E(Di)

Bernoulli
Chung-Lu

Self-Edges:
kikj
2m

k2i
4m

ki

Model I

No Self-Edges:
kikj
2m

0 ki − k2i
2m

Model III

O(m) Chung-Lu

Self-Edges: 1−
(

1− 2
kikj
4m2

)m
1−

(
1− k2i

4m2

)m ∑

j 6=i

1−
(

1− 2
kikj
4m2

)m

Model II <
kikj
2m

<
k2i
4m

+1−
(

1− k2i
4m2

)m
< ki

No Self-Edges: 1−
(

1− 2
kikj
4m2

)m
0

∑

j 6=i

1−
(

1− 2
kikj
4m2

)m

Model IV <
kikj
2m

< ki − k2i
2m

Table 4.1: Model Summary
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where i = 1, . . . , n. Why is the support of each self-edge equal to {0, 2} and not {0, 1}?
Essentially, this is to ensure that all edges are counted equally. In general, if there is an
edge in an undirected graph between two distinct nodes i and j then both aij and aji are
1. If edges are to be counted equally, then self-edges should also appear in the adjacency
matrix twice but since there is only one diagonal matrix element, aii, both appearances
need to be recorded in the same element.

We have not yet defined the probabilities, pij, i, j = 1, . . . , n, in the probability distri-
butions, (4.1) and (4.2). In the BCL model they have a very specific form and are based
on the only input into the BCL model, a sequence of degrees, k = (k1, . . . , kn), where ki is
the degree of node i and n is the number of nodes. Often, this degree sequence is taken
from a real network we are interested in modeling. In the BCL model, pij, i, j = 1, . . . , n,
has the following form

pij =





kikj
2m

i 6= j,

k2i
4m

i = j,
(4.3)

where m = 1
2

∑
i ki is the number of edges in the graph and we assume k2i ≤ 2m ∀ i which

is a sufficient condition to ensure that pij ≤ 1 ∀ i, j.

One of the central properties of the BCL model is that the expected degree sequence
is actually given by the input degree sequence, k. In other words, the expected degree of
node i is equal to ki. To show this we note that in the model, the degree of node i is a
random variable Di, i = 1, . . . , n, given by

Di =
∑

j

Aij, i = 1, . . . , n. (4.4)

We have

E(Di) = E

(∑

j

Aij

)
=
∑

j

E(Aij). (4.5)

For edges with distinct node endpoints, Aij is a Bernoulli random variable and thus its
expected value is given by

E(Aij) = pij =
kikj
2m

, i 6= j. (4.6)

For self-edges we can use the probability mass function given in (4.2) to determine the
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expected value

E(Aii) =
∑

aiiP (Aii = aii)

= 0 · P (Aii = 0) + 2 · P (Aii = 2)

= 2pii =
k2i
2m

.

(4.7)

Thus, the expected degree of node i is given by

E(Di) =
∑

j

E(Aij) =
∑

j 6=i

E(Aij) + E(Aii)

=
∑

j 6=i

kikj
2m

+
k2i
2m

=
∑

j

kikj
2m

=
ki

2m

∑

j

kj = ki
2m

2m

= ki.

(4.8)

This is the central property of the BCL model.

In practice, model properties are often examined by using an algorithm to generate
instances of the model. We use Algorithm 5 to generate instances of the BCL model.
Of course, in any given instance of the BCL model the node degree will not match the
expected degree; however, by the law of large numbers, as we increase the number of
instances the average degree for each node should approach the expected degree for each
node. We explore the validity of our algorithm by ensuring that this theory holds using a
small real network. Consider the arXiv general relativity collaboration network [62] which
is an author collaboration network based on data from the general relativity section of
the arXiv preprint server and has 4158 nodes and 13422 edges. The largest degree node
has 81 neighbors. Thus, k2i ≤ 2m ∀ i, since the maximum value of k2i is 6561 and 2m is
equal to 26844. If we use Algorithm 5 to generate a collection of instances of the BCL
model then the average degree for each node should approach the expected degree as the
collection size increases. Given that we will present several different versions of the BCL
model throughout this thesis, we need to provide different names to each version. We
refer to the BCL model presented in this section as both the BCL model and Model I. We
will also often refer to this model as the original Chung-Lu model since it was the model
originally proposed by Chung and Lu [22, 23]. Using the degree sequence from the general
relativity collaboration network to define the probabilities, pij, i, j = 1, . . . , n in Equation
(4.3) we use Algorithm 5 to generate 10000 instances of the Chung-Lu model. Figure 4.1
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plots the difference between the expected degree of each node and the average degree of
each node where we have ordered the nodes from smallest degree to largest degree based on
their degree size in the original graph. The expected degree of each node is of course equal
to the actual degree of each node in the original graph as shown by Equation (4.8). The
average degree of each node is calculated using l instances of the Chung-Lu model where
we vary l from 10 to 10000. We can see from the plots that as we increase the number
of instances in our average degree calculation the difference between the average and the
expected degree decreases where the largest difference between the two values is seen in
large degree nodes. This indicates that Algorithm 5 does in fact generate instances of the
BCL model.

Additionally, we can also compare the expected number of edges in the graph with the
average number of edges, calculated from l instances of the model. Like the degree of node
i, Di, we can define the random variable M as the number of edges in the model where M
is defined as

M =
1

2

∑

i

Di =
1

2

∑

i

∑

j

Aij (4.9)

Then the expected value of M can be calculated as follows

E(M) =
1

2

∑

i

E(Di)

=
1

2

∑

i

ki

=
1

2
(2m)

= m.

(4.10)

From our numerical experiments with l = 10000 the average number of edges is 13421.12.
Compare this to 13422 which is the expected number of edges in the graph (and the actual
number of edges in the original graph). Table 4.2 lists the average number of edges for
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l = 10, 100, 1000, 5000 and 10000.

Algorithm 5: Bernoulli Chung-Lu Algorithm

for i = 1 to n do
for j = i to n do

Draw a random number from the uniform distribution on [0,1];
if The random number is less than or equal to pij from Equation (4.3) then

/* Add edge (i, j) to the graph */

if i 6= j then
aij = aji = 1;

else
aii = 2;

end

end

end

end

Table 4.2: Average Number of Edges for l Instances of the BCL Model.

Number of Instances (l) 10 100 1000 5000 10000

Average Number of Edges 13442.5 13420.31 13421.65 13421.21 13421.12

4.3 O(|Edges|) Chung-Lu Model

One of the issues with the BCL model and in particular the algorithm used to generate
instances of the BCL model, Algorithm 5, is that Algorithm 5 requires O(n2) operations.
We must visit every edge and decide with probability pij if the edge should be included in
the graph. This algorithm can become prohibitively expensive as the size of the graphs we
consider grows. However, we can devise an algorithm that generates instances of a model
that requires only O(m) operations where m = 1

2

∑
i ki is the number of edges in the graph

and where the probability that an edge will appear in the graph is approximately the same
in this model as in the BCL model. This algorithm is very similar to the Fast Chung-Lu
algorithm presented in [94, 58]; however we allow for self-edges. Before we present this
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Figure 4.1: General Relativity Collaboration Network: Comparing Average Degree and
Expected Degree from Model I.

algorithm we begin by presenting a generative process which will allow us to determine the
exact probabilities of the edges in the model.

Suppose we place all the elements of the adjacency matrix aij, i, j = 1, . . . , n in a bag.
We are no longer treating the elements as random variables so we write the elements as aij
instead of Aij. In this section, we will assume that the elements representing self-edges,
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aii, i = 1, . . . , n, are in the bag. We create our graph by drawing m elements of the
adjacency matrix from the bag. After each draw we return the elements to the bag so that
we allow elements to be drawn more than once. If the element aij is drawn, aij and aji
are both set equal to 1. If an element has already been drawn the values of aij and aji
remain equal to 1. If the element aii is drawn then aii = 2 and this value doesn’t change
if aii is drawn subsequently. We begin by considering the case where i 6= j. We want to
know what the probability of an edge between vertices i and j is after m draws. In other
words, we want to know the probability of having an edge between vertices i and j is in our
graph. This is not simply equal to the probability of drawing aij or aji on a single draw.
To calculate the probability of having an edge between vertices i and j in the graph we
note that an edge between nodes i and j appears in the graph because either aij or aji is
drawn at least once. More formally, let us define three mutually exclusive and exhaustive
events that can occur on a single draw, E1 = {aij is drawn}, E2 = {aji is drawn}, and
E3 = {Another element of the adjacency matrix is drawn}. Let pij be the probability that
event E1 happens, pji be the probability that event E2 happens and 1 − pij − pji be the
probability that event E3 happens. On m independent draws let Xi be the number of
occurrences of event Ei, i = 1, 2, 3. Then the vector X = (X1,X2) has a multinomial
distribution with joint pdf given by

f(x1, x2) =
m!

x1!x2!x3!
px11 p

x2
2 p

x3
3 =

m!

x1!x2!x3!
px1ij p

x2
ji (1− pij − pji)x3 , (4.11)

where x3 = m − x1 − x2 and p3 = 1 − p1 − p2. In fact, we could define the vector
X̂ = (X11,X12, . . . ,Xij, . . . ,Xn(n−1)) where Xij is the number of occurrences of event

Eij = {aij is drawn}, i, j = 1, . . . , n, on m independent draws. Then X̂ has a multinomial
distribution with joint pdf given by

f(x11, x12, . . . , xij, . . . , xn(n−1)) =
m!

x11!x12! · · ·xij! · · ·xn(n−1)!xnn!
px1111 p

x12
12 · · · p

xij
ij · · · p

xn(n−1)

n(n−1) p
xnn
nn ,

(4.12)
where

∑
i

∑
j pij = 1 and xnn = m −

∑
(i,j) 6=(n,n) xij. The vector X is simply a condensed

version of X̂ where we have simply condensed the n2−2 events where we draw an adjacency
matrix element that is not aij or aji into one event. As noted

∑
i

∑
j pij = 1. Returning

to our original goal of calculating the probability of an edge between nodes i and j in
the graph, we can use the joint pdf in (4.11) to calculate this value. We want to know
the probability that either X1 or X2 is at least 1. This is equivalent to one minus the
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probability that both are zero. Written formally we have

pij(m) := P (There is an edge between nodes i and j in the graph after m draws)

= 1− f(X1 = 0,X2 = 0)

= 1− (1− pij − pji)m, i 6= j.

(4.13)

If we assume that pij = pji we can use the binomial theorem to simplify the formula for
pij(m):

(1− 2pij)
m =

m∑

k=0

(
m

k

)
(−1)k(2pij)

k. (4.14)

This give us

pij(m) = 1− (1− 2pij)
m

= 1−
m∑

k=0

(
m

k

)
(−1)k(2pij)

k

=
m∑

k=1

(
m

k

)
(−1)k+1(2pij)

k

= 2mpij +O(p2ij), i 6= j.

(4.15)

Returning to the case where i = j, we note that a self-edge appears in the graph at node i
if Aii is drawn at least once. So to calculate the probability of a self-edge appearing in the
graph, we define two mutually exclusive and exhaustive events that can occur on a single
draw, E = {aii is drawn}, and E = {Another element of the adjacency matrix is drawn}.
Let pii be the probability that event E happens, and 1−pii be the probability that event E
happens. On m independent draws let X be the number of occurrences of event E. Then
the vector X has a binomial distribution with probability distribution function given by

f(x) =

(
m

x

)
pxii(1− pii)m−x (4.16)

We want to know the probability that the value of X is greater than or equal to 1. This is
equal to 1− P (X = 0). Using the binomial distribution in Equation (4.16) we get

pii(m) := P (There is a self-edge at node i in the graph after m draws)

= 1− f(X = 0)

= 1− (1− pii)m.
(4.17)
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Using the binomial theorem to simplify we get

pii(m) = 1− (1− pii)m

= 1−
m∑

k=0

(
m

k

)
(−1)k(pii)

k

=
m∑

k=1

(
m

k

)
(−1)k+1(pii)

k

= mpii +O(p2ii).

(4.18)

We can combine the two cases to get the probability of edge (i, j) being in the graph after
m draws as

pij(m) =





1− (1− 2pij)
m ≈ 2mpij i 6= j,

1− (1− pij)m ≈ mpii i = j,
(4.19)

where we have assumed that pij = pji. Suppose we let pij =
kikj
(2m)2

∀ i, j so that
∑

i

∑
j pij =

1, then

pij(m) =





1−
(

1− 2
kikj
(2m)2

)m
=

kikj
2m

+O(p2ij) i 6= j,

1−
(

1− k2i
(2m)2

)m
=

k2i
4m

+O(p2ii) i = j.
(4.20)

If we ignore the higher order terms then we get

pij(m) ≈





kikj
2m

i 6= j,

k2i
4m

i = j.
(4.21)

Thus, the probability of having an edge between nodes i and j in the graph is approximately
equal to the value given by Equation (4.3), the probability of choosing an edge between
nodes i and j in the BCL model. Our new model is defined by Equation (4.20) and the
following algorithm outlines the above generative process necessary to generate instances
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of our new model.

Algorithm 6: Approximate Chung-Lu Algorithm

for k = 1 to m do

Draw element aij with probability
kikj
(2m)2

;

/* Add edge (i, j) to the graph */

if i 6= j then
aij = aji = 1;

else
aii = 2;

end

end

The way that Algorithm 6 is written requires us to perform O(n2) calculations to
determine the probabilities of drawing each edge on a single draw (i.e. the probability
of drawing aij), so in fact this algorithm is still O(n2). However, suppose on each draw,
instead of drawing the edges themselves we independently draw the nodes of each edge. So,
on a single draw, we draw node i with probability ki

2m
and we draw node j with probability

kj
2m

. Since the two events are independent, the probability of drawing the ordered pair of

nodes (i, j), or oriented edge (i, j), is equal to
kikj
(2m)2

. This only requires us to calculate n

probabilities and since m ≥ n − 1 in any connected graph, our algorithm is now O(m).
This algorithm is described by Algorithm 7. Both Algorithms 6 and 7 generate instances
of the same model; however, Algorithm 7 has a much faster run-time. Since Algorithm 7 is
O(m) we refer to the underlying model as the O(m) Chung-Lu (MCL) model, O(|Edges|)
Chung-Lu model or as Model II.

Algorithm 7: O(|Edges|) Chung-Lu Algorithm

for k = 1 to m do
Draw node i with probability ki

2m
;

Draw node j with probability
kj
2m

;
/* Add edge (i, j) to the graph */

if i 6= j then
aij = aji = 1;

else
aii = 2;

end

end
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Note that we have defined pij(m) in the MCL model as the probability of edge (i, j)
being in the graph. Equivalently, pij(m) can be defined as the probability of choosing edge
(i, j) to be in the graph. Given this interpretation, we can then represent each edge as a
random variable like we did in the BCL model. Edges can again be represented as elements
of the adjacency matrix where edges between distinct nodes follow a Bernoulli distribution
as in (4.1) and self-edges are random variables with the probability mass function given by
(4.2). The difference between the BCL model and the MCL model is in the probability pij.
In the BCL model pij is defined in Equation (4.3) and in the MCL model pij is defined as
pij(m), Equation (4.20). In other words, we could use Algorithm 5 with pij(m) given by
the exact values in Equation (4.20) in place of pij from Equation (4.3) and this would be
generate instances of the MCL model. Algorithm 5 with pij = pij(m) from the exact values
in Equation (4.20) is equivalent to Algorithms 7 and 6. We can use this equivalence to
calculate the expected degree of each node in the MCL model. As noted in the discussion
of the BCL model, since the adjacency matrix elements are random variables so too is
the degree of each node and the expected degree of each node. For the MCL model,
E(Aij) = pij(m) if i 6= j and E(Aii) = 2pii(m). If we use the approximation in Equation
(4.21) for pij(m) then we find E(Di) = ki as in (4.8). However if we include the higher
order terms in pij(m) we get the following:

E(Di) = E

(∑

j

Aij

)
=
∑

j

E(Aij)

=
∑

j 6=i

pij(m) + 2pii(m)

=
∑

j 6=i

1− (1− 2pij)
m + 2(1− (1− pii)m)

= n+ 1−
∑

j 6=i

(
1− kikj

2m2

)m
− 2

(
1− k2i

4m2

)m
,

(4.22)

which should be approximately equal to ki. We should note however that the expected de-
gree in Equation (4.22) will always be less than ki. To see this, we examine the probabilities
in Equation (4.20):

pij(m) =





1−
(

1− 2
kikj
(2m)2

)m
=

kikj
2m

+
∑m

l=2

(
m
l

)
(−1)l+1(

kikj
2m2 )l i 6= j,

1−
(

1− k2i
(2m)2

)m
=

k2i
4m

+
∑m

l=2

(
m
l

)
(−1)l+1(

k2i
4m2 )l i = j.

(4.23)

In Appendix A we prove that 0 <
kikj
2m2 < 1 and then we can use Bernoulli’s Inequality
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[95, Theorem 5.1] to show that 1 −
(

1− 2
kikj
(2m)2

)m
< 1 −

(
1−mkikj

2m2

)
=

kikj
2m

, thus pij(m)

is strictly less than
kikj
2m

for i 6= j. For self-edges, we also have that the maximum value

for pii(m) is strictly less than
k2i
4m

for i 6= j. Given that E(Aij) = pij(m) for i 6= j and
E(Aii) = 2pii(m) this implies that E(Di) < ki.

We can once again explore the performance of our algorithm using the general relativ-
ity collaboration network. Using Algorithm 7 to generate l = 10000 instances of the MCL
model we can examine the difference between the average degree for each node and the
expected degree. Figure 4.2 plots the difference between the average degree and the ex-
pected degree, given by Equation (4.22), for l = 10, 100, 1000 and 10000. We can see from
the figures that as the number of instances of the graph increase the difference between the
average and the expected degree decreases, as expected, suggesting our algorithm correctly
generates instances of the MCL model. We can also use the general relativity collaboration
network to explore the difference between the expected degree given by Equation (4.22)
and the expected degree under the BCL model, which is ki, ∀ i. Figure 4.3 plots the
difference between the expected degree and the actual degree. This clearly illustrates that
the MCL model may have significant deviations from the target degree distribution for
high degree nodes where the error for the largest degree node is approximately 3%.

4.4 Excluding Self-Edges

4.4.1 Bernoulli Chung-Lu Model

Most of the real-world networks we are interested in studying do not have self-edges. So
we would like to build models that do not allow for self-edges. This often involves taking
existing models and modifying them to exclude the possiblity of self-edges. To do this
in the BCL is fairly straight forward. We still represent each edge as a random variable,
where distinct node edges have a Bernoulli distribution and self-edges have the probability
mass function given in (4.2). However, to remove the possibility of self-edges we simply set
the probability of choosing a self-edge to 0. More formally, we re-define the probabilities
in (4.3) as

pij =





kikj
2m

i 6= j,

0 i = j,
(4.24)

where we still assume k2i ≤ 2m ∀ i to ensure pij ≤ 1 ∀ i, j. This is, of course, a sufficient
but not necessary condition to ensure that the probabilities are well defined. Note that by
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Figure 4.2: General Relativity Collaboration Network: Comparing Average Degree and
Expected Degree from Model II.

removing self-edges from the graph we no longer have the nice property that E(Di) = ki.
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Figure 4.3: General Relativity Collaboration Network: Comparing Expected Degree from
Model II and Actual Degree.

The expected degree is now given by the following

E(Di) = E

(∑

j

Aij

)
=
∑

j

E(Aij) =
∑

j 6=i

kikj
2m

=
∑

j 6=i

kikj
2m

=
ki

2m

∑

j 6=i

kj = ki
2m− ki

2m

= ki −
k2i
2m

,

(4.25)

where E(Aii) = 0 · 1 + 2 · 0 = 0, i = 1, . . . , n. We have assumed that
k2i
2m
≤ 1 which

means that in most cases E(Di) ≈ ki. We use the general relativity collaboration network
to illustrate the difference between the BCL model (with self-edges) and BCL without
self-edges which we also refer to as Model III. Figure 4.4 plots the difference between the
expected degree, Equation (4.25) and the degree in the original graph. Note that the

difference is equal to E(Di) − ki = − k2i
2m

. From Figure 4.4 we can see that all the values
are less than one in magnitude as expected.
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Figure 4.4: General Relativity Collaboration Network: Comparing Expected Degree from
Model III and Actual Degree.

4.4.2 O(|Edges|) Chung-Lu Model

As we previously mentioned, the algorithm to generate instances of the BCL model is
computationally expensive. Even if we remove self-edges from the model the algorithm is
still O(n2). In the case with self-edges, the MCL model proved an attractive alternative
since it is an approximation to the BCL model but the algorithm used to generate instances
of the model is much less computationally expensive. We would like to find a similar
algorithm for the case without self-edges. To do so we return to the generative process
we used to build the MCL model. Suppose we drew elements of the adjacency matrix
from a bag that doesn’t include the self-edges (i.e. We remove the aii elements to begin
with and only draw the aij elements). This would modify pij, the probability of drawing
edge (i, j) on a single draw, since

∑
i,j pij must equal 1 and now pii = 0 ∀ i. This would

of course modify pij(m), the probability of edge (i, j) being in the graph after m draws.
However, what enables us to turn the generative process in the MCL model into a O(m)
algorithm is the ability to draw the nodes of an edge independently as opposed to drawing
the edge itself. This is what makes the algorithm O(m) as opposed to O(n2). Once we
require that self-edges be excluded then we can no longer draw edge nodes independently
since once we draw the first node the probability of drawing the second node changes (i.e.
the probability of drawing node i if it has already been drawn is 0). So this rules out the
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idea of building an O(m) algorithm by drawing edges from a bag where the self-edges are
simply not included. However, a much simpler alternative exists. Suppose that on a given
draw, the probability of drawing an element of the adjacency matrix remains the same but
we exclude self-edges by simply doing nothing if i = j (i.e. aii remains equal to 0). So
in this case, the probability on a single draw of drawing element aij is still given by the
following

pij =





kikj
4m2 i 6= j,

k2i
4m2 i = j,

(4.26)

but the probability of having edge (i, j) in the graph after m draws is now given by

pij(m) =





kikj
2m

+O(p2ij) i 6= j,

0 i = j.
(4.27)

So pij(m) remains the same for i 6= j, while by design pii(m) now equals 0 for all i. This
model is equivalent to the BCL model with the probabilities in Equation (4.3) replaced
with the probabilities given in Equation (4.27) and we refer to this model as both the
MCL model without self-edges and Model IV. The algorithm that generates instances of
this model is given by Algorithm 8. This is the algorithm referred to as the Fast Chung-Lu
model in [94, 58] and from the above analysis we note that this algorithm does not generate
instances of the BCL model with self-edges.

Algorithm 8: O(|Edges|) Chung-Lu Algorithm without Self-Edges.

for k = 1 to m do
Draw node i with probability ki

2m
;

Draw node j with probability
kj
2m

;
/* Add edge (i, j) to the graph */

if i 6= j then
aij = aji = 1;

end

end

Of course, by not including self-edges in the model we have also changed the expected
degree for all nodes. If we ignore the higher order terms in Equation (4.27) then the
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expected degree is given by

E(Di) = E(
∑

j

Aij) =
∑

j

E(Aij) =
∑

j 6=i

E(Aij)

=
∑

j 6=i

pij(m) =
∑

j 6=i

kikj
2m

= ki −
k2i
2m

,

(4.28)

which is the same as in Model III, the BCL model without self-edges. However, if we don’t
ignore the higher order terms in pij(m) then the expected degree is calculated as follows

E(Di) =
∑

j 6=i

pij(m) =
∑

j 6=i

(
1−

(
1− 2

kikj
(2m)2

)m)

=
∑

j 6=i

(
1−

(
1− kikj

2m2

)m)
,

(4.29)

where E(Di) < ki − k2i
2m

since we showed in Section 4.3 that 1 −
(

1− 2
kikj
(2m)2

)m
<

kikj
2m

.

We return to the general relativity collaboration network to examine how these model
properties differ in a real network. We note that there are no self-edges in the original
network. Figure 4.5 plots the difference between the expected degree in Model IV and the
upper bound on the expected degree, Equation (4.28), which is also the expected degree
in Model III. Figure 4.6 plots the difference between the expected degree in Model IV and
the actual degree. For the largest degree node this difference is approximately 3%. We
also note that the expected number of edges in Model IV for the general relativity network
is
∑

nE(Di) = 13333.55 which is approximately 100 edges fewer than in the actual graph,
which is m = 13422, and where the expected number of edges in Model III is 13413.01.

4.4.3 Summary

In the previous sections, we presented the 4 models along with their properties that we that
we outlined in Table 4.1. We also used a real-world network to examine the approximation
error present in the BCL model without self-edges, and the MCL models both with and
without self-edges. We next look at what happens to these models when the constraint
k2i ≤ 2m ∀ i is violated.
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Figure 4.5: General Relativity Collaboration Network: Comparing Expected Degree from
Model IV and Expected Degree Upper Bound, the Expected Degree from Model III.
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Figure 4.6: General Relativity Collaboration Network: Comparing Expected Degree from
Model IV and the Degree, the Expected Degree from Model I.
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4.5 Constraint Violation

4.5.1 Bernoulli Chung-Lu Model

Suppose we use as an input into either the Bernoulli Chung-Lu model or the O(m) Chung-
Lu model a degree sequence k = (ki, . . . , kn) where the constraint k2i ≤ 2m ∀ i is violated.
To see why this constraint is important we revisit the edge probability formulas from the
original BCL model which are given as follows

pij =





kikj
2m

i 6= j,

k2i
4m

i = j.
(4.30)

The constraint is important because it provides a sufficient condition to guarantee that
these probabilities are well-defined (i.e. 0 ≤ pij ≤ 1 ∀ i, j). Suppose we have two nodes i
and j where k2i > 2m and k2j > 2m. This implies that kikj > 2m and pij > 1. In fact, for
all pairs of nodes i and j with k2i > 2m, and k2j > 2m, pij in (4.30), is greater than 1. In
order for the probabilities to be well-defined we need to redefine pij in (4.30). In the case
where the constraint k2i ≤ 2m ∀ i is violated the probability of choosing an edge between
nodes i and j can be defined by

pij =





min
{
kikj
2m
, 1
}

i 6= j,

min
{
k2i
4m
, 1
}

i = j.
(4.31)

If the probabilities are defined as above then 0 ≤ pij ≤ 1 ∀ i, j. If the constraint k2i ≤ 2m ∀ i
holds then the probabilities reduce to those in Equation (4.30). Thus, Model I, the BCL
model with self-edges, is imbedded in this model, which we refer to as Model V. We can
calculate the expected degree for Model V as

E(Di) = E

(∑

j

Aij

)
=
∑

j

E(Aij) =
∑

j 6=i

min

{
kikj
2m

, 1

}
+ 2 min

{
k2i
4m

, 1

}

=
∑

j 6=i

min

{
kikj
2m

, 1

}
+ min

{
k2i
2m

, 2

}
,

(4.32)

where E(Di) ≤ ki and if the constraint k2i ≤ 2m ∀ i holds then E(Di) = ki. The difference
between ki and E(Di) can be written as

ki − E(Di) =
k2i
2m
−min

{
k2i
2m

, 2

}
+
∑

j 6=i

(
kikj
2m
−min

{
kikj
2m

, 1

})
(4.33)
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where we use the following to rewrite ki,

ki =
∑

j

kikj
2m

=
∑

j 6=i

kikj
2m

+
k2i
2m

. (4.34)

From this equation we can see that for i 6= j, it is the difference between
kikj
2m

and 1, when
kikj
2m

> 1, that contributes to the difference between ki and E(Di). For self-edges, it is the

difference between
k2i
2m

and 2, when
k2i
2m

> 2, that contributes to the difference between ki
and E(Di).

To explore this difference empirically we now consider a network that violates the
constraint k2i ≤ 2m ∀ i. The network we will examine is an autonomous system graph
which maps the traffic flow across the internet [82]. It has 6474 nodes and 12572 edges.
The largest degree node has 1458 neighbors, thus k2i > 2m for at least 1 node and in
fact, for this network, k2i is greater than 2m for 491 nodes. This implies that there are
120295 probabilities, pij, i 6= j, that need to be redefined and set equal to 1. This amounts
to less than 1% of all probabilities, pij, i 6= j. However, these violations can have a
noticeable impact on the model and its expected degree. Figures 4.7 and 4.8 compare the
expected degree of Model V to ki and we can see that the error on the largest degree node
is approximately 35%.

4.5.2 (O(|Edges|) Chung-Lu Model

In the MCL model all the probabilities are still well-defined even if the constraint k2i ≤
2m ∀ i is violated. To see this, we use Equation (4.20), which defines the probability of
choosing an edge between nodes i and j and which we include here for ease of exposition:

pij(m) =





1−
(

1− kikj
2m2

)m
i 6= j,

1−
(

1− k2i
4m2

)m
i = j.

(4.35)

Even if k2i > 2m for more than one node i, it is still true that both 0 < 1 − kikj
2m2 < 1 and

0 < 1− k2i
4m2 < 1 since the proof in Appendix A does not assume k2i ≤ 2m. This implies that

0 ≤ pij(m) ≤ 1, ∀ i, j. This implies that our model does not change and that the expected
degree for each node is still well defined and is given by Equation (4.22). However, as
noted in Section 4.3, the expected degree in the MCL model can be very different from
ki, the expected degree in the original BCL model, and as we will show this difference is
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Figure 4.7: Autonomous System Network (Constraint Violated): Comparing Expected
Degree from Model V and Actual Degree.
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Figure 4.8: Autonomous System Network (Constraint Violated): Relative difference
between Expected Degree from Model V and Actual Degree.

exacerbated when the constraint is violated. As we noted previously, the maximum value
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of pij(m) is
kikj
2m

for i 6= j and
k2i
4m

for self-edges. However, when the constraint k2i ≤ 2m ∀ i
is violated, and

kikj
2m

> 1 for some i 6= j, since pij(m) is still a well-defined probability, we

know that 1 is in fact a lower upper bound. The same is true if
k2i
4m

> 1 for some node
i; pii(m) still has an upper bound of 1. Using this knowledge we can actually calculate
a tighter upper bound on the expected degree for Model II when the degree constraint is
violated. Recall from Section 4.3 that the upper bound on E(Di) was ki when k2i ≤ 2m ∀ i
(see Table 4.1). To calculate our new upper bound, we note that for nodes i and j where
kikj
2m
≤ 1, the upper bound on pij(m) is still

kikj
2m

, and if
kikj
2m

> 1 then the upper bound on

pij(m) is 1. For self-edges, if
k2i
4m
≤ 1, then the upper bound on pii(m) is still

k2i
4m

, and if
k2i
4m

> 1 then the upper bound on pii(m) is 1. Combining this information we get the upper
bound on the expected degree of node i for Model II as

Ê(Di) = min

{
k2i
2m

, 2

}
+
∑

j 6=i

min

{
kikj
2m

, 1

}
(4.36)

which is equal to the expected degree, Equation (4.32), from Model V and if the constraint

k2i ≤ 2m ∀ i is violated, Ê(Di) < ki. Also note that if the constraint is not violated

then the maximum difference between pij(m) and
kikj
2m

is 1 since both are between 0 and

1. However, if
kikj
2m

> 1 the difference can be much larger than 1 which implies that
the difference between the expected degree of node i in the MCL model, Model II, and
ki, can be much larger when the constraint is violated than when the constraint holds.
Empirically, we can study this model using a real-world network to generate instances of
the model. We use the degree sequence from the same autonomous system graph that was
used with Model V. Figure 4.9 plots the difference between the expected degree and the
actual degree, which is the expected degree in the original BCL model, Model I. Figures
4.10 and 4.11 break this difference down by plotting the difference between the expected
degree and the upper bound on the expected degree and the difference between the upper
bound on the expected degree and the actual degree, respectively. We can see for some
large degree nodes this difference can be quite large. In fact, for the largest degree node
which has degree 1458, this difference is approximately 600. This is also reflected in the
number of edges. The expected number of edges for this graph can be calculated from
the expected degree of each node and is equal to 11445.185225. The upper bound on the
expected number of edges can be calculated as

Ê(M) =
1

2

∑

i

Ê(Di), (4.37)
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where Ê(Di) is given by Equation (4.36). For the autonomous system graph, Ê(M) =
11836.836939. Note that the total number of edges in the original autonomous system
graph is 12572. Thus there are approximately 1000 fewer edges expected in the graph than
are in the original graph which is approximately 9% of the total number of edges. This is a
large deviation, of which people may not be aware and the goal of our work is to quantify
and illustrate these deviations.
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Figure 4.9: Autonomous System Network (Constraint Violated): Comparing Expected
Degree from Model II and Actual Degree.

4.5.3 Removing Self-Edges

Sections 4.5.1 and 4.5.2 analyze what happens to Models I and II when the constraint
k2i ≤ 2m ∀ i is violated, respectively. We are still left to analyze Models III and IV
(no self-edges) in the case of the degree constraint violation. Model III is simply Model
I without self-edges, thus our analysis of what happens to Model III when the degree
constraint is violated will be similar to our analysis in Section 4.5.1. Similarly, Model IV
is simply Model II without self-edges and thus our analysis of what happens to Model IV
when the degree constraint is violated will be similar to our analysis from Section 4.5.2.
In Model III, the BCL model without self-edges, the probability of choosing edge (i, j) is
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Figure 4.10: Autonomous System Network (Constraint Violated): Comparing Expected
Degree and Expected Degree Bound from Model II.
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Figure 4.11: Autonomous System Network (Constraint Violated): Comparing Expected
Degree Bound from Model II and Actual Degree.
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given by

pij =





kikj
2m

i 6= j,

0 i = j.
(4.38)

If the degree constraint is violated, then not all the probabilities are necessarily well-defined.
So if we suppose that not all the probabilities in Equation (4.38) are well-defined we need
to redefine the probabilities. In the case where the degree constraint is violated we define
the probability of choosing edge (i, j) as follows

pij =





min
{
kikj
2m
, 1
}

i 6= j,

0 i = j,
(4.39)

and where we refer to the model defined by the probabilities in Equation (4.39) as Model
VI. We can calculate the expected degree for Model VI as

E(Di) = E

(∑

j

Aij

)
=
∑

j

E(Aij)

=
∑

j 6=i

min

{
kikj
2m

, 1

}
,

(4.40)

where E(Di) ≤ ki − k2i
2m

and if the constraint k2i ≤ 2m ∀ i holds then E(Di) = ki − k2i
2m

.
The difference between ki and E(Di) can be written as

ki − E(Di) =
k2i
2m

+
∑

j 6=i

(
kikj
2m
−min

{
kikj
2m

, 1

})
. (4.41)

We once again use the autonomous system graph to explore this model numerically. The
expected degree is given by Equation (4.40) and in Figure 4.12 we plot the difference
between E(Di) and the actual degree, ki, where ki is also the expected degree value in
Model I. Figure 4.13 plots the difference between the expected degree and the expected

degree bound, which is given by Ê(Di) = ki− k2i
2m

. Note that E(Di) ≤ Ê(Di) < ki and the

difference between Ê(Di) and ki can be quite large, as can be seen in Figure 4.14. Contrast

this to the case where k2i ≤ 2m ∀ i, where the maximum difference between ki and ki− k2i
2m

is 1 since
k2i
2m
≤ 1 ∀ i. However, the majority of the difference between E(Di) and ki is in

the difference between E(Di) and Ê(Di) as can be seen in Figure 4.13.
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To generate instances of Model VI we could use the O(n2) Algorithm 5 with the proba-
bilities from Equation 4.39. However, we could also use the O(m+n) algorithm introduced
by [67] since it also generates instances of Model VI. Of course, if the degree constraint
is satisfied Model VI reduces to Model III, the BCL model without self-edges, and the
O(m+ n) algorithm generates instances of this model when the degree constraint is satis-
fied. Thus, the O(m+n) algorithm offers an alternative algorithm for generating instances
of these models and is inexpensive, relative to the the O(n2) algorithm. Even though Model
III is an approximation to the original Chung-Lu model it is still a better approximation
than Model IV since the upper bound on the expected degree of node i in Model IV in
given by the expected degree of node i in Model III. One could then make the argument
that rather than using the O(m) algorithm, Algorithm 8, we should use the O(m + n)
algorithm given by [67] since it generates instances that are a better approximation to the
original Chung-Lu model. Similarly, as we will see below, when the degree constraint is
violated, Model IV does not change and the upper bound on the expected degree of node i
is given by the expected degree of node i in Model VI. This again suggests that using the
algorithm proposed by [67] is preferable over Algorithm 8 since it generates instances that
are a better approximation to the original Chung-Lu model. However, in our experience
the O(m + n) was about twice as slow as Algorithm 8 at generating instances which can
be a significant reducation in speed if the graph is very large and thus it still remains
interesting to explore the properties of Model IV and Algorithm 8.

Finally, we consider Model IV, the MCL model with no self-edges, under the assumption
that the constraint k2i ≤ 2m ∀ i is violated. The probability of choosing edge (i, j) in this
model is given by

pij(m) =





1−
(

1− kikj
2m2

)m
i 6= j,

0 i = j.
(4.42)

When the constraint k2i ≤ 2m ∀ i is violated, from Section 4.5.2 we know that pij(m) is
still well-defined for i 6= j and since pii(m) = 0 ∀ i, pij(m) is still well-defined for all i, j.
Thus, our model does not change and the expected degree is still given by Equation (4.29).
As in Section 4.5.2, we can put an upper bound on the expected degree and compare this
to the expected degree from Model I. As we noted in Section 4.5.2 the maximum value for

pij(m) is min
{

1,
kikj
2m

}
for i 6= j. Thus, the upper bound on the expected degree of node i

is

Ê(Di) =
∑

j 6=i

min

{
kikj
2m

, 1

}
, (4.43)

which is the same as E(Di) from Model VI. Note that the expected degree from Model
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Figure 4.12: Autonomous System Network (Constraint Violated): Comparing Expected
Degree from Model VI and Actual Degree.
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Figure 4.13: Autonomous System Network (Constraint Violated): Comparing Expected
Degree and Expected Degree Bound from Model VI.

VI will always be strictly greater than the expected degree from Model IV. To see this we
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Figure 4.14: Autonomous System Network (Constraint Violated): Comparing Expected
Degree Bound from Model VI and Actual Degree.

note that for nodes i 6= j where
kikj
2m

> 1, the probability of edge (i, j) being in Model VI is

1 and in Model IV is 1−
(

1− kikj
2m2

)m
< 1. For nodes i 6= j where

kikj
2m
≤ 1, the probability

of edge (i, j) being in Model VI is
kikj
2m

and in Model IV is 1 −
(

1− kikj
2m2

)m
<

kikj
2m

. Note

that we have the following relationship for Model IV,

E(Di) < Ê(Di) ≤ ki −
k2i
2m

< ki, (4.44)

where ki − k2i
2m

is the expected degree from Model III and ki is the expected degree from
Model I. To see how large these differences can be empirically we again use the autonomous
system graph. Figure 4.15 summarizes these differences by plotting the difference between
the expected degree and the degree in the original graph which is quite large for some
large degree nodes. Figure 4.16 plots the difference between the expected degree and the
expected degree bound, while Figure 4.17 plots the difference between the expected degree
bound and the actual degree.
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Figure 4.15: Autonomous System Network (Constraint Violated): Comparing Expected
Degree from Model IV and Actual Degree.
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Figure 4.16: Autonomous System Network (Constraint Violated): Comparing Expected
Degree and Expected Degree Bound from Model IV.
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Figure 4.17: Autonomous System Network (Constraint Violated): Comparing Expected
Degree Bound from Model IV and Actual Degree.

4.5.4 Summary

We have examined both the Bernoulli and O(m) Chung-Lu models with and without self-
edges when the constraint k2i ≤ 2m ∀ i is violated. When the constraint is violated in
the BCL model, both with and without self-edges, we actually need to define new models.
However, when the constraint is violated in the MCL model, both with and without self-
edges, the models do not change. The following table summarizes the models presented
when the constraint k2i ≤ 2m ∀ i is violated and note that for all four models, when the
constraint is violated, the degree of certain nodes, particularly large degree nodes, in any
given instance of the model can be much less than the degree in the original graph.

4.6 Triangle Counts and Clustering Coefficients

One of the nice properties of the BCL model, as originally proposed, is the fact that
E(Di) = ki ∀ i. This makes it an attractive model, since it can be used to model networks
with any degree sequence. However, researchers are often interested in building models
that match other network properties, including the network community structure. The
network community structure is often measured by the clustering coefficient which can be
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defined for each node i as follows

Ci =
Number of pairs of neighbors of i that are connected

Number of pairs of neighbors of i
(4.45)

or

Ci =
Number of unique triangles node i belongs to

Number of pairs of neighbors of i
. (4.46)

The clustering coefficient can be written as a random variable, Ci, where Ci is a function
of the random variables Aij, j = 1, . . . , n. We can then compare the realizations of
this random variable from our model instances and its expected value with the clustering
coefficients from the real network. Unfortunately, the expected value of the clustering
coefficient, E(Ci), is not easily determined. Our analysis would be greatly simplified if we
could write the following

E(Ci) =
E(Number of unique triangles node i belongs to)

E(Number of pairs of neighbors of i)
, (4.47)

however this equation does not hold in general. Despite the fact that E(Ci) cannot be
written as above we note that in the BCL model, Model I, E(Di) = ki, and thus on average
the number of pairs of neighbors of node i is the same in any instance of Model I as in the
real network. It has been noted empirically that the BCL model generates instances that
under-estimate the clustering coefficient for many real-world networks [80, p. 450]. Thus, if
Ci = ci is much less on average in the model instances then it is due to the lack of triangles
for node i. In all the other models we have introduced, E(Di) < ki, so the number of
pairs of neighbors of node i is on average less in a given model instance than in the real
network. Thus, for Ci = ci to be less on average for a given model instance relative to the
real-world network, the number of triangles for node i must be less on average in the model
instance relative to the real network by a greater proportion than the number of pairs of
neighbors. Not only does the number of triangles for each node play an important role in
determining the clustering coefficient but it can also be used as a measure of community
structure independent of the clustering coefficient. Hence, we focus on determining its
value in our models as a way to look at community structure and to examine the difference
between our models and real networks. We begin by noting that the number of triangles
for a given node i in the original Chung-Lu model, Model I, is a random variable that can
be defined as

Ti =
∑

j 6=i

( ∑

k 6=i,k 6=j

AijAikAjk

)
, ∀ i, (4.48)

where a triangle occurs at node i if there is an edge between nodes i and j, between nodes
i and k and between nodes k and j where the nodes i, j and k are all unique nodes. Note

84



that every triangle is counted twice in the above sum since Ajk and Akj both appear. Since
Ti is a random variable we can compute the expected value of Ti as

E(Ti) =
∑

j 6=i

∑

k 6=i,j

AijAikAjk

=
∑

j 6=i

∑

k 6=i,j

E(AijAikAjk)

=
∑

j 6=i

∑

k 6=i,j

E(Aij)E(Aik)E(Ajk)

=
∑

j 6=i

∑

k 6=i,j

pijpikpjk,

(4.49)

where E(AijAikAjk) = E(Aij)E(Aik)E(Ajk) because each edge is drawn independently.
Equation (4.3) defines pij, i, j = 1, . . . , n, in Model I which allows us to simplify E(Ti) as
follows

E(Ti) =
∑

j 6=i

∑

k 6=i,j

pijpikpjk

=
∑

j 6=i

∑

k 6=i,j

(
kikj
2m

)(
kikk
2m

)(
kjkk
2m

)

=
k2i

(2m)3

∑

j 6=i

k2j
∑

k 6=i,j

k2k

=
k2i

(2m)3

∑

j 6=i

k2j
(
K2 − k2i − k2j

)

=
k2i

(2m)3

∑

j 6=i

K2k
2
j − k2i k2j − k4j

=
k2i

(2m)3
(
K2(K2 − k2i )− k2i (K2 − k2i )− (K4 − k4i )

)

E(Ti) =
k2i

(2m)3
(
(K2 − k2i )2 − (K4 − k4i )

)
, (4.50)

where we define K2 =
∑n

i=1 k
2
i and K4 =

∑n
i=1 k

4
i . Note that the expected value of the

number of triangles at node i is a function of the degrees and is not related to the number
of triangles in the network since the number of triangles is not an input into the model.
If we were interested in better matching the expected number of triangles at node i to
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the actual number of triangles at node i in the original graph, ti, then a possible strategy
would be to make pij a function of ti and tj. However, E(Di) would then be a function of
ti and would no longer be equal to ki. Also note that random variable Ti is not a function
of any self-edges which means that neither is E(Ti) and thus for Model III, the BCL model
without self-edges, E(Ti) is also given by Equation (4.50). For Models II and IV the MCL
models with and without self-edges, respectively, we can determine E(Ti) if we replace pij
in Equation (4.49) with pij(m), i 6= j from Equation (4.20) as follows

E(Ti) =
∑

j 6=i

∑

k 6=i,j

pij(m)pik(m)pjk(m)

=
∑

j 6=i

∑

k 6=i,j

(
1−

(
1− 2

kikj
(2m)2

)

)m)(
1−

(
1− 2

kikk
(2m)2

)m)(
1−

(
1− 2

kjkk
(2m)2

)m)
,

(4.51)

which cannot be easily simplified. However, as we have noted before the probability of an
edge between distinct nodes in Models II and IV is lower than in Models I and III. This
implies that E(Ti) will be lower in Models II and IV than in Models I and III. To illustrate
the differences between E(Ti) in our models and in a real network we revisit the general
relativity collaboration network. Figure 4.18 plots the difference between the expected
number of triangles in Models I and III and the actual number of triangles in the general
relativity collaboration network where the nodes are still ordered by degree from smallest
to largest. This difference is quite large for some nodes. Figure 4.19 plots the relative
difference between the expected number of triangles in Models I and III and the actual
number of triangles for each node with at least one triangle in the real network. For Models
II and IV, Figure 4.20 plots the difference between the expected number of triangles and
the actual number of triangles and Figure 4.21 plots the relative difference between the
expected number of triangles and the actual number of triangles. From these figures it is
hard to determine if the expected number of triangles in Models I and III is closer to the
actual triangle count or if the expected number of triangles in Models II and IV is closer
to the actual triangle count. Figure 4.22 plots the difference between the expected number
of triangles in Models II and IV and the upper bound which is the expected number of
triangles in Models I and III. From the figure we can see that the expected number of
triangles in Models I and III is higher than in Models II and IV and thus the expected
number of triangles in Models I and III is closer to the true triangle count. In general,
since E(Ti) is not a function of Ti we can not draw any conclusions about whether E(Ti)
will be closer to ti in Models I and III or in Models II and IV.

In the above analysis we have assumed that the constraint, k2i ≤ 2m ∀ i, holds. If this
constraint no longer holds, then our above analysis needs to be revised to account for the
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Figure 4.18: General Relativity Collaboration Network: Comparing Expected Number of
Triangles from Models I and III and Actual Number of Triangles.

constraint violation. As we mentioned in Section 4.5, if the constraint, k2i ≤ 2m ∀ i, is
violated then instead of using Models I and III we use Models V and VI, respectively. For
both Model V and VI, E(Ti) is the same, and can be determined by using Equation (4.31)
to define pij, i 6= j, and substituting this into Equation (4.49). This gives us the following

E(Ti) =
∑

j 6=i

∑

k 6=i,j

pijpikpjk

=
∑

j 6=i

∑

k 6=i,j

min

{
kikj
2m

, 1

}
min

{
kikk
2m

, 1

}
min

{
kjkk
2m

, 1

}
.

(4.52)

Expression (4.52) will be less than expresssion (4.50). However, this does not imply that
when the constraint is violated E(Ti) will be further from the true triangle count since
E(Ti) is not a function of the number of the triangles in the original network. Expression
(4.50) only provides an upper bound on expression (4.52).

For the MCL models, Models II and IV, when the constraint, k2i ≤ 2m ∀ i, is violated,
the models do not change and hence E(Ti) is still given by Equation (4.51). However, if
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the constraint is violated then the upper bound on pij(m), i 6= j, is given by

pij(m) < min

{
1,
kikj
2m

}
. (4.53)

This implies that in this case the upper bound on E(Ti) is given by Equation (4.52), which
is a tighter upper bound than Equation (4.50). Note that if the constraint, k2i ≤ 2m ∀ i,
holds then Equations (4.52) and (4.50) are the same.

Numerically, we can examine the effect of the constraint violation on the number of
triangles using the autonomous system network we have examined previously. Figures 4.23
and 4.24 plot the difference between E(Ti) and ti, the actual number of triangles node i
belongs to, for Models V and VI. Notice how for this network E(Ti) > ti for a number of
nodes whereas for the general relativity network, E(Ti) < ti for all nodes i. Note that for
the general relativity network, which does not violate the constraint, k2i ≤ 2m, ∀ i, Models
I and III are equivalent to Models V and VI, respectively. In general, since E(Ti) is not a
function of ti we can not draw any conclusions about whether E(Ti) will be greater or less
than ti. Figures 4.25 and 4.26 plot the difference between between E(Ti) and ti for Models
II and IV. Note from the figures that Models II and IV are actually better able to match
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Figure 4.19: General Relativity Collaboration Network: Relative difference between
Expected Number of Triangles from Models I and III and Actual Number of Triangles.
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Figure 4.20: General Relativity Collaboration Network: Comparing Expected Number of
Triangles from Models II and IV and Actual Number of Triangles.

the number of triangles than Models V and VI although no conclusion can be drawn in
general about which set of models will better match the triangle count data.

4.7 Conclusion

The original Chung-Lu model is a simple model that has the nice property that the expected
degree is given by the input degree sequence. However, we have shown that when changes
are made to the original model (i.e. excluding self-edges) and the constraints on the degrees
of the input degree sequence do not hold then this property no longer holds. In the case
where we exclude self-edges this difference can be quite small. However, when the degrees
in the degree sequence violate the constraint this difference can be quite large. We have
also examined in-depth an approximate Chung-Lu model, the MCL model, and shown
how large this approximation can be especially when the degree constraints are violated.
It is important to know how much this approximation can effect any instance created
using either Model II or Model IV. In particular, we must be aware that when the degree
constraint is violated then the expected degree can in fact be quite different than the
original degree sequence. We also looked at another important network property, triangle
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Figure 4.21: General Relativity Collaboration Network: Relative difference between
Expected Number of Triangles from Models II and IV and Actual Number of Triangles.

counts, and noted that the Chung-Lu model is not designed to match this property and
typically underestimates the number of triangles in networks we are interested in. In the
next Chapter we will look at some ways to try and improve the MCL model and decrease
the approximation error.
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Figure 4.25: Autonomous System Network (Constraint Violated): Comparing Expected
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Chapter 5

Improving the O(m) Chung-Lu model

5.1 Introduction

Consider the O(m) Chung-Lu model without self-edges, Model IV, as described in Section
4.4.2. Algorithm 8 is used to generate instances of this model and often these instances are
referred to as instances of the original Chung-Lu model, Model I. As we have mentioned
previously, in the original Chung-Lu model, which assumes that the constraint k2i < 2m ∀ i
is satisfied, the expected degree of node i is equal to the input degree, ki, and the expected
number of edges is equal to m, the edge count in the original network. However, as we saw
in the previous Chapter, the expected degree of node i and the expected edge count can be
much different under Model IV than in Model I, and thus the instances that are referred to
as representations of the original Chung-Lu model can have fairly different properties than
what is assumed. If we want to use these instances to compare with other graph generators
we must be aware of the actual model underlying our instances and its properties to make
a fair comparison. Given this, the next step in our analysis is to look at simple ways of
modifying Model IV to better approximate the original Chung-Lu model, Model I. In our
discussion we only consider Model IV since this is the model most used in practice (i.e.
Algorithm 8 is most often used to generate instances of the “Chung-Lu” model). In Section
5.2, we examine how increasing the number of draws can change the model. In Section 5.3
we create an algorithm that first uses Algorithm 8 and then looks at the resulting instance
to determine any additional edges needed. In Section 5.4 we examine what happens if
we let the probabilities in Equation (4.29) have a more general form (i.e. pij 6= kikj

(2m)2
).

This results in a constrained optimization problem that is difficult to solve and we turn to
fixed point methods for an approximate solution. Finally, in Section 5.5 we examine the
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improvement proposed in [85] and compare it to the improvements we suggest. In Sections
5.2, 5.3, 5.4 and 5.5, we assume that the degree constraint is not violated. In Section
5.6 we look at the improvements introduced in the previous sections when the constraint
k2i < 2m ∀ i is violated.

5.2 Drawing Additional Edges

As we mentioned previously, we are interested in modifying Model IV to improve the
approximation error. For Model IV, the probability of edge (i, j) being in the graph after
m draws is given by

pij(m) =





1−
(

1− kikj
4m2

)m
i 6= j,

0 i = j,
(5.1)

where pij(m) ≈ kikj
2m

but pij(m) is strictly less than
kikj
2m

. For now let us assume that the

input degree sequence does not violate the constraint, k2i < 2m ∀ i, and thus
kikj
2m
≤ 1. If

we could increase the probability pij(m) such that it was closer to
kikj
2m

then E(Di) would
be be closer to ki (see Equation (4.8)) and E(M) would better approximate m. One way
to increase this probability is to draw more edges. So instead of drawing m edges we draw
ω edges and Algorithm 8 becomes the following:

Algorithm 9: O(ω) Chung-Lu Algorithm without Self-Edges.

for k = 1 to ω do
Draw node i with probability ki

2m
;

Draw node j with probability
kj
2m

;
/* Add edge (i, j) to the graph */

if i 6= j then
aij = aji = 1;

end

end

The probability of edge (i, j) being in the graph after ω draws is given by

pij(ω) =





1−
(

1− kikj
2m2

)ω
i 6= j,

0 i = j,
(5.2)
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and we refer to the model underlying Algorithm 9 and described by Equation (5.2) as
the O(ω) Chung-Lu (ωCL) model without self-edges. Using Equation (4.15) we get that

pij(ω) ≈ ω
m
· kikj

2m
with pij(ω) strictly less than ω

m
· kikj

2m
. Since ω ≥ m this implies that pij(ω)

can equal
kikj
2m

if we choose the correct ω; however, we have only one parameter, ω, and we

want to match n(n−1)
2

probabilities. In fact, for certain values of ω, pij(ω) may be larger

than
kikj
2m

which implies that E(Di) may be greater than ki. So, how many edges do we
draw? One approach is to draw as many edges as necessary to get m edges in the resulting
instance of the graph. This process is described in Algorithm 10.

Algorithm 10: A Matching Edge Count Chung-Lu Algorithm (No Self-Edges).

δ ← 1;
while δ ≤ m do

Draw node i with probability ki
2m

;

Draw node j with probability
kj
2m

;
/* Add edge (i, j) to the graph */

if i 6= j and aij = aji = 0 then
aij = aji = 1;
δ ← δ + 1;

end

end

The model underlying Algorithm 10 is not described by the probabilities in Equation
(5.2) since the number of draws required to get m edges in a given instance of the model
is variable. Instead, the probability of drawing a particular edge in the model underlying
Algorithm 10 is given by the following

P (There is an edge between nodes i and j in the graph) =
∞∑

ω=m

P (γ = ω) · P (There is an edge between nodes i and j in the graph after ω draws),

(5.3)

where γ is the number of draws required to get m edges in the graph and the minimum
number of draws is m so ω ≥ m. Since we do not know P (γ = ω) we use the general
relativity network and Algorithm 10 to generate l = 10000 synthetic graphs to study the
properties of the underlying model numerically. The average value of ω is 13502.5 and the
standard deviation is 9.01, where we recall that m = 13422. Figure 5.1 plots the difference
and the relative difference between the average node degree and the actual degree. Figure
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5.2 plots the difference between the average node degree and the expected node degree from
Model IV. We saw in Figure 4.6, which plots the difference between the expected degree in
Model IV and the actual degree, that the expected degree in Model IV underestimates the
actual degree and we can see from Figures 5.1 and 5.2 that for large degree nodes adding
edges moves the average degree closer to the actual degree relative to Model IV (since

d
(l)

i > E(Di)m); however, the average degree still remains below the actual degree.
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Figure 5.1: General Relativity Collaboration Network: Difference and Relative difference
between Average Degree from Algorithm 10 and Actual Degree.

Suppose that we assume that pij(ω) = ω
m

kikj
2m

for i 6= j (pij(ω) = 0 for i = j). Then, for
i 6= j,

P (There is an edge between nodes i and j in the graph) =
∞∑

ω=m

P (γ = ω)
ω

m

kikj
2m

=
1

m

kikj
2m

∞∑

ω=m

P (γ = ω)ω

=
E(ω)

m

kikj
2m

≈ ω

m

kikj
2m

,

(5.4)

where ω is the average ω from l synthetic graphs generated using Algorithm 10 (i.e. ω =
13502.5 for the general relativity graph with l = 10000). Note that the probability of there
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being and edge between nodes i and j, i 6= j in the ωCL model without self-edges with
ω = ω is also approximately ω

m

kikj
2m

. Thus, the ωCL model without self-edges with ω = ω

could be used to approximate the model underlying Algorithm 10, assuming pij(ω) = ω
m

kikj
2m

is a reasonable approximation.

Therefore, returning to the general relativity network, we use the ωCL model without
self-edges with ω = ω = 13502.5 to approximate the model underlying Algorithm 10 and
we plot the difference between the expected degree and the actual degree and the difference
between the expected degree and the expected degree from Model IV in Figures 5.3 and
5.4, respectively. The same general pattern is seen in these Figures as in Figures 5.1a and
5.2. We should note that for approximately 90% of the nodes the expected degree under
this model is actually higher than the actual degree.

Algorithm 10 has the nice property that ensures that every instance has exactly m
edges but unfortunately we cannot quantify the underlying model for a given network
(P (γ = ω) is unknown). As an alternative, we could use Algorithm 9 with ω chosen so
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Figure 5.2: General Relativity Collaboration Network: Comparing Average Degree from
Algorithm 10 (l = 10000) and Expected Degree from Model IV.
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that E(M) = m. The formula for E(M) is given by the following

E(M) =
1

2

∑

i

E(Di)

=
1

2

∑

i

∑

j 6=i

E(Aij)

=
1

2

∑

i

∑

j 6=i

pij(ω)

=
1

2

∑

i

∑

j 6=i

1−
(

1− kikj
22

)ω
.

(5.5)

We can set E(M) equal to m and solve for ω numerically. This gives ω = 13511.56 ≈ 13512.
As an alternative, we could choose ω to match the degree of the highest degree node. The
formula for E(Di) is given by

E(Di) =
∑

j 6=i

E(Aij)

=
∑

j 6=i

pij(ω)

=
∑

j 6=i

1−
(

1− kikj
2m2

)ω
.

(5.6)

We can set E(Di) equal to ki where i is chosen to be the largest degree node and solve
for ω numerically. For the general relativity network this gives ω = 13832.54 ≈ 13833.
Finally, we consider matching all n(n−1)

2
probabilities (i.e. Find ω such that pij(ω) =

kikj
2m

,

i = 1, . . . , n, j = i, . . . , n.) In this case we have n(n−1)
2

equations and only one unknown. So
the resulting ω can be chosen as the least-squares solution to this overdetermined system.
Since probabilities are given by

pij(ω) = 1−
(

1− kikj
2m2

)ω
, (5.7)
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where i = 1, . . . , n, j = i . . . , n, our system of equations is described by

kikj
2m

= 1−
(

1− kikj
2m2

)ω

(
1− kikj

2m2

)ω
= 1− kikj

2m

ω ln

(
1− kikj

2m2

)
= ln

(
1− kikj

2m

)
,

(5.8)

for i = 1, . . . , n, j = i . . . , n where the following must hold:
kikj
2m

< 1 ∀ i, j 6= i. If we

place all n(n−1)
2

ln
(

1− kikj
4m2

)
terms in the vector a and all n(n−1)

2
ln
(

1− kikj
2m

)
terms in the

vector b we can write the system as aω = b and the least squares solution is ω = aTb
aT a

.
The least squares solution for the general relativity network is ω = 13720.66 ≈ 13721.
For the three different ω outlined above, we use the general relativity network to plot the
difference between the expected degree and the actual degree and the difference between
the expected degree and the expected degree from Model IV in Figures 5.5 to 5.10. We
can see from these figures that as we increase ω in order to match the node degree for the
higher degree nodes we overshoot on the node degrees for the smaller degree nodes.
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Figure 5.5: General Relativity Collaboration Network: Comparing Expected Degree from
the ωCL model without self-edges with ω = 13511.56 (E(m) = m) and Actual Degree.
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from Model IV.

5.3 Two Distributions Algorithm

As the above analysis indicates, simply drawing more edges to add to our graph doesn’t
necessarily get us any closer to matching the degree distribution. Given this, we consider
an alternative approach. We begin by using Algorithm 8, the MCL algorithm without
self-edges, to build an initial instance of the graph. Then using this instance we create
a “remaining degree” distribution for each node based on the remaining number of edges
needed to match the degree of each node. So, for each node we calculate the following

ri = ki − di, (5.9)

where ki is the degree of node i in the original graph and di is the degree of node i after
running Algorithm 8. For the nodes where ri < 0, we set those values equal to zero, so in
fact the formula for ri is given by

ri = max{ki − di, 0}, (5.10)

and we define mr = 1
2

∑
i ri. We then run Algorithm 8 again but this time with node i

drawn with probability ri
2mr

and node j drawn with probability
rj

2mr
and the number of
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Figure 5.7: General Relativity Collaboration Network: Comparing Expected Degree from
the ωCL model without self-edges with ω = 13832.54 (E(Di) = ki for largest degree

node) and Actual Degree.

draws equal to mr. For this model, we have

pij(mr) = 1−
(

1− rirj
2m2

r

)mr
≈ rirj

2mr

. (5.11)

If we assume that pij(mr) =
rirj
2mr

then the expected degree of node i in this model, the
remaining degree model, is given by

E(Dr
i ) = ri −

r2i
2mr

≈ ri = ki − di. (5.12)

Suppose that an edge between nodes i and j generated in the first round model could not
be generated in the remaining degree model and vice versa (i.e. suppose the events are
mutually exclusive). Then the expected degree of node i in the combined graph would
just be the sum of the expected degrees from each model. However, these events are not
mutually exclusive, since an edge between nodes i and j can be generated in either the
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Figure 5.8: General Relativity Collaboration Network: Comparing Expected Degree from
the ωCL model without self-edges with ω = 13832.54 (E(Di) = ki for largest degree

node) and Expected Degree from Model IV.

first round model or the remaining degree model or both. Thus,

P (There is an edge between nodes i and j in the combined graph) =

P (There is an edge between nodes i and j in the first round model) +

P (There is an edge between nodes i and j in the remaining degree model) −
P (There is an edge between nodes i and j in both the first round and the remaining degree model).

(5.13)

Thus, the expected degree in the combined graph will be less than the sum of the expected
degrees from the two models and is still strictly less than ki so unlike the case of just
adding edges the expected degree cannot overshoot the actual degree. We should note
that the remaining degree distribution is based on the particular instance of the graph
created using Algorithm 8 and thus will be different every time Algorithm 8 is run. The
entire algorithm is summarized in Algorithm 11. Given the dependence of the remaining
degree distribution on the realization of the first graph model it is difficult to analyze
the actual model underlying any instance created using Algorithm 11 (i.e. finding the
probability of edge (i, j) being in the graph after running the algorithm) thus we analyze
Algorithm 11 numerically by using instances created from real networks. Again, we use the
general relativity network and generate l = 10000 instances of the graph using Algorithm
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Figure 5.9: General Relativity Collaboration Network: Comparing Expected Degree from
the ωCL model without self-edges with ω = 13720.66 (Least-squares solution) and Actual

Degree.

11. Figure 5.11 plots the difference between the average degree from l = 10000 instances
created using Algorithm 11 and the actual degree, while 5.12 plots the difference between
the average degree from l = 10000 instances created using Algorithm 11 and the expected
degree under Model IV. From Figure 5.12 we can see that Algorithm 11 improves upon
Model IV, since the average degree under Algorithm 7 is closer to the actual degree than

the expected degree in Model IV is to the actual degree (d
l

i > E(Di)) however it does
not do as good as just simply adding edges (see Figure 5.4 where the difference between

E(Di)ω and E(Di) is larger indicating that E(Di)ω is closer to ki than d
l

i)

5.4 Optimal Probabilities

In Model IV, networks are generated by independently drawing m edges. The probability
of drawing edge (i, j) on a single draw is denoted pij where

∑
i

∑
j pij = 1. The probability

of an edge occurring between nodes i and j where i 6= j in the resulting graph is given by

pij(m) := P (There is an edge between nodes i and j in the graph after m draws)

= 1− (1− pij − pji)m, i 6= j,
(5.14)
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Figure 5.10: General Relativity Collaboration Network: Comparing Expected Degree
from the ωCL model without self-edges with ω = 13720.66 (Least-squares solution) and

Expected Degree from Model IV.
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Figure 5.11: General Relativity Collaboration Network: Comparing Average Degree from
Algorithm 11 and Actual Degree.
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Algorithm 11: Two Distributions Chung-Lu Algorithm without Self-Edges.

for k = 1 to m do
Draw node i with probability ki

2m
;

Draw node j with probability
kj
2m

;
/* Add edge (i, j) to the graph */

if i 6= j then
aij = aji = 1;

end

end
for i = 1 to n do

Calculate di =
∑

i aij;
Calculate ri = max{ki − di, 0};

end
Calculate mr = 1

2

∑
i ri;

for k = 1 to mr do
Draw node i with probability ri

2mr
;

Draw node j with probability
rj

2mr
;

/* Add edge (i, j) to the graph */

if i 6= j then
aij = aji = 1;

end

end

and the probability of a self-edge is given by

pii(m) := P (There is a self-edge at node i in the graph after m draws)

= 0,
(5.15)

by design. The expected degree of each node is computed as follows,

E(Di) = E

(∑

j

Aij

)
=
∑

j

E(Aij), (5.16)
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Figure 5.12: General Relativity Collaboration Network: Comparing Average Degree from
Algorithm 11 and Expected Degree from Model IV.

where E(Aij) = pij(m) if i 6= j and E(Aii) = 2pii(m). This gives us

E(Di) = E

(∑

j

Aij

)
=
∑

j

E(Aij)

=
∑

j 6=i

pij(m)

=
∑

j 6=i

1− (1− pij − pji)m.

(5.17)

In Model IV, we assume that on each edge draw, the probability of choosing edge (i, j)

is equal to
kikj
4m2 and pij = pji. However, what if we assumed a more general form for this

probability (i.e we no longer assume it is a function of node degrees). In order for the
algorithm to remain O(m) we need the nodes to be drawn independently so we assume a
general form for the probability of choosing edge (i, j) where this assumption holds. Let
λi be the probability of choosing node i and let λj be the probability of drawing node j
where

∑
i λi = 1 then pij = λiλj and the expected degree can be written as

E(Di) =
∑

j 6=i

1− (1− 2λiλj)
m. (5.18)
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How do we determine suitable λi, i = 1, . . . , n? One way is to match the expected degree
of each node to the degree in the actual network where ki is the degree of node i in the
actual network. Thus we want to find λi, i = 1, . . . , n such that

ki =
∑

j 6=i

1− (1− 2λiλj)
m, i = 1, . . . , n

∑

i

λi = 1, 0 ≤ λi ≤ 1 ∀ i,
(5.19)

where n is the number of nodes in the network. If we ignore the constraint,
∑

i λi = 1,
and the inequality constraints, then we can write the above as a system of n nonlinear
equations and n unknowns:

F (λ) = 0, (5.20)

where
Fi(λ) = ki −

∑

j 6=i

1− (1− 2λiλj)
m, i = 1, . . . , n. (5.21)

Note that we can include the equality constraint in the nonlinear system by defining λ1 =
1−
∑n

i=2 λi and then substituting out λ1. Then we have a nonlinear system of n equations
and n− 1 unknowns, an overdetermined system.

Problem (5.19) may not have a solution however we can formulate the following con-
strained optimization problem

min
λ
‖F (λ)‖ s.t.

∑

i

λi = 1, 0 ≤ λi ≤ 1 ∀ i, (5.22)

where ‖F (λ)‖2 =
∑n

i=1 |Fi(λ)|2, in order to find a vector λ that will generate graphs that
approximate the degree distribution optimally in expectation, with optimality defined by
the function ‖F (λ)‖ in (5.22). Note that we could also choose a different functional form
for our optimization function, in particular, we could weight the terms in the summation
of ‖F (λ)‖ (i.e. ‖F (λ)‖2 =

∑
i ωi|Fi(λ)|) to put an emphasis on high or low degree nodes,

or to make the relative error uniform, etc.

Unfortunately, the optimization problem in (5.22) can be computationally expensive to
solve given the large number of constraints (2n + 1). Given this, our goal is not to find a
solution to the optimization problem in (5.22), instead we want to find a λ such that the
function value, F (λ), is lower than with λi = ki

2m
∀ i. This will get us closer to an optimal

solution (in terms of (5.22)) than Model IV. To do this we develop an iterative method
attempting to find λi values such that ‖F (λ)‖ is lower than ‖F (λ)‖ with λi = ki

2m
∀ i. We
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begin by developing a fixed point method to solve F (λ) = 0. Consider the equation for a
single node, Fi(λ) = 0, which can be re-written as follows,

Fi(λ) = 0,

ki −
∑

j 6=i

1− (1− 2λiλj)
m = 0,

ki −
∑

j 6=i

[
1−

m∑

p=0

(
m

p

)
(1)p(−2λiλj)

m−p

]
= 0,

ki −
∑

j 6=i

[
1−

(
1 +m(−2λiλj) +

m∑

p=2

(
m

p

)
(1)p(−2λiλj)

m−p

)]
= 0,

ki −
∑

j 6=i

[
2mλiλj −

m∑

p=2

(
m

p

)
(1)p(−2λiλj)

m−p

]
= 0,

ki − 2mλi
∑

j 6=i

λj −
∑

j 6=i

m∑

p=2

(
m

p

)
(1)p(−2λiλj)

m−p = 0,

2mλi
∑

j 6=i

λj = ki −
∑

j 6=i

m∑

p=2

(
m

p

)
(1)p(−2λiλj)

m−p,

λi =
ki −

∑
j 6=i
∑m

p=2

(
m
p

)
(1)p(−2λiλj)

m−p

2m
∑

j 6=i λj
,

(5.23)

and from which we can get the following fixed point method

λ
(q+1)
i =

ki −
∑

j<i

∑m
p=2

(
m
p

)
(1)p(−2λ

(q)
i λ

(q+1)
j )m−p −

∑
j>i

∑m
p=2

(
m
p

)
(1)p(−2λ

(q)
i λ

(q)
j )m−p

2m
(∑

j<i λ
(q+1)
j +

∑
j>i λ

(q)
j

) ,

(5.24)

where we can force λ
(q+1)
i = λ

(q)
i if the λ

(q+1)
i given by Equation (5.24) violates the constraint

0 ≤ λ
(q+1)
i ≤ 1. Using Equation (5.24) along with the constraints on λi, we propose the

method outlined in Algorithm 12 to find an improved solution for λ. If the constraints
on λ

(q+1)
i are never violated then Algorithm 12 will find a solution to F (λ) = 0, however,

we have no guarantee that
∑

i λi = 1 and by normalizing at the end we no longer have
F (λ) = 0; however, the idea is that we may be able to obtain a better solution (i.e. smaller
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|‖F (λ)‖) than if λi = ki
2m

although there are no guarantees.

Algorithm 12: Algorithm For Finding Improved λ

Input: λ(0)

q = 0;

Evaluate ‖F (λ(0))‖;
while ‖F (λ(q))‖ > ε do

for i = 1 to n do

λ
(q+1)
i =

ki−
∑
j<i

∑m
p=2 (mp)(1)p(−2λ

(q)
i λ

(q+1)
j )m−p−

∑
j>i

∑m
p=2 (mp)(1)p(−2λ

(q)
i λ

(q)
j )m−p

2m
(∑

j<i λ
(q+1)
j +

∑
j>i λ

(q)
j

) ;

if λ
(q+1)
i < 0 or λ

(q+1)
i > 1 then

λ
(q+1)
i = λ

(q)
i ;

end

end
q = q + 1;

end

σλ =
∑

i λ
(q)
i ;

for i = 1 to n do

λi =
λ
(q)
i

σλ
;

end

To test our algorithm we once again use the general relativity graph. We set λ
(0)
i =

ki
2m
∀ i and ε = 10−7. The algorithm requires 12 iterations to reach the desired tolerance and

the inequality constraints on λi are never violated. However, before we normalize at the end
of the algorithm we find

∑
i λi = 1.0034. Let λ denote the improved (normalized) solution.

We find that ‖F (λ)‖ = 4.656 and ‖F (λ(0))‖ = 9.876. The maximum value of Fi, which is
the difference between the actual degree of node i and the expected degree of node i goes
from 2.342 to 0.534. However, the minimum value of Fi actually increases from 3.72e−4 to
6.78e−3 and if we examine the expected number of edges then we find that with λ = λ(0)

the expected number of edges is 13333.55 but with λ = λ the expected number of edges is
13331.57 where the actual number of edges in the graph is 13422. It appears that choosing
a λ to approximate the solution to (5.22) is better able to match the expected degree to
the actual degree for higher degree nodes but at the cost of matching the expected degree
to the actual degree for lower degree nodes. We can also see the difference by comparing
Figures 5.13 and 5.14 where Figure 5.13 plots the difference between the expected degree
using λ and the actual degree while Figure 5.14 plots the difference between the expected
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degree with λi = ki
2m
∀ i and the actual degree. The difference between expected degree

and the actual degree is smaller with λ than with λi = ki
2m
∀ i. We can also see this

from Figure 5.15 which plots the difference between the expected degree using λ and the
expected degree with λi = ki

2m
∀ i since this difference is positive.
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Figure 5.13: General Relativity Collaboration Network: Comparing Expected Degree
with λ and Actual Degree.

5.5 Corrected Fast Chung-Lu Algorithm

Pfeiffer et al. [85] also suggest an algorithm for improving the approximation error in Model
IV, the MCL model without self-edges. They refer to their algorithm as the corrected Fast
Chung-Lu (cFCL) algorithm. The basic idea behind their algorithm is to create a list
of 2m nodes where each node is added to the list by drawing nodes independently with
probability ki

2m
, and then pairing the nodes in the list together. If any pair of nodes is

chosen more than once or a node is paired with itself then the set of nodes can be randomly
permuted until no duplicate nodes are found nor any node is paired with itself. Rather
than permute the entire list they suggest only permuting a few edges, the edges that are
duplicates or self-edges. There graph generator is designed to replicate this process and we
reproduce their algorithm in Algorithm 13. The algorithm is very similar to Algorithm 8
however when the algorithm encounters either a self-edge or a duplicate edge both nodes
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Figure 5.14: General Relativity Collaboration Network: Comparing Expected Degree
from Model IV

(
λi = ki

2m
∀ i
)

and Actual Degree.

Node i

0 1000 2000 3000 4000 5000

E
(D

i
) λ

−
E
(D

i
) λ

(0
)

-0.5

0

0.5

1

1.5

2

Difference between Expected Degree and
Model IV Degree

Figure 5.15: General Relativity Collaboration Network: Comparing Expected Degree
with λ and Expected Degree from Model IV.

are placed in a waiting queue. Then rather than continuing with regular edge insertions
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the algorithm attempts to select neighbours for all nodes in the queue. If a new edge
for a node selected from the queue results in a duplication or a self-edge then the chosen
neighbour is also placed in the queue. As the authors note, this ensures that if a node
is ‘due’ for a new edge but is stopped from getting it due to a duplication or a self-edge
then the node is ‘slightly permuted’ by exchanging places with a node sampled later. This
process re-weights the nodes so that nodes that have been involved in a duplication or
self-edge are given a higher weight to be chosen in a subsequent edge. The underlying
abstract model is not explicitly defined in [85] but we can explore the properties of the
model numerically by generating a large number of network instances using Algorithm 13
and then using the average degree to approximate the expected degree. We again use the
general relativity network and generate l = 10000 instances. Figure 5.16 plots the difference
between the average degree from Algorithm 13 and the actual degree while Figure 5.17 plots
the difference between the average degree from Algorithm 13 and the expected degree from
Model IV. The differences in Figure 5.17 are (mostly) positive suggesting that Algorithm
13 does reduce the approximation error in Model IV however some of the differences in
Figure 5.16 are positive which implies that for some nodes the average degree (≈ E(Di))
is greater than the actual degree (i.e. Algorithm 13 may over-correct the approximation
error for some nodes). We also note that the differences in Figure 5.16 are larger than
in Figure 5.13 suggesting that finding the improved λ provides a better approximation
although there is an increased cost of finding the improved λ.
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Algorithm 13: Corrected Fast Chung-Lu Algorithm (from [85])

Initialize queue;
δ ← 1;
while δ ≤ m do

if queue is empty then
Draw node i with probability ki

2m
;

else
i = pop(queue);

end

Draw node j with probability
kj
2m

;
if i 6= j and aij = 0 then

aij = aji = 1;
δ ← δ + 1;

else
push(queue,i);
push(queue,j);

end

end
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Figure 5.16: General Relativity Collaboration Network: Difference between Average
Degree from Algorithm 13 (l = 10000) and Actual Degree.
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Figure 5.17: General Relativity Collaboration Network: Comparing Average Degree from
Algorithm 13 (l = 10000) and Expected Degree from Model IV.

5.6 Constraint Violation

We now turn to the case where the constraint, k2i ≤ 2m, ∀i, is violated and look at how the
different methods to improve the O(m) Chung-Lu model perform in this case. We begin by
revisiting Algorithm 10 where each instance of the model is generated to match the edge
count. Using Algorithm 10, we generate l = 10000 instances of the autonomous system
network. Note that this network has several nodes that violate the degree constraint.
Figure 5.18 plots the difference and the relative difference between the average node degree
and the actual degree. Figure 5.19 plots the difference between the average node degree
and the expected node degree from Model IV. As with the general relativity network, where
all the degree constraints hold, increasing the number of draws to match the edge count
in the original network improves the degree distribution relative to Model IV, however,
in this case the difference between the average degree distribution and the actual degree
distribution is still quite large. To discuss why this may be the case we revisit Algorithm
9 and the ωCL model without self-edges, since the ωCL model without self-edges with
ω = ω can be used to approximate the model underlying Algorithm 10. Note that in the
ωCL model without self-edges, the probability of edge (i, j) being in the graph after ω
draws is given by Equation (5.2) even if the degree constraint is violated. We mentioned

previously that pij(ω) is strictly less than ω
m

kikj
2m

. In networks where the degree constraint is
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violated, we can refine this as pij(ω) = min{1, ω
m

kikj
2m
}. For each node the expected degree

is just the sum of these probabilities (i.e. E(Di) =
∑

j 6=i pij(ω)). Ideally, we want pij(ω)

to contribute
kikj
2m

to the expected degree (Note that in the case where self-edges are not

allowed, we actually want this contribution to be larger). However, if
kikj
2m

> 1 then the
contribution from pij(ω) is 1 and the other pij(ω) must make up this difference. If this
difference is large this may require ω to be large however we don’t want to increase ω too
much as that will increase the total number of edges in the graph. In the autonomous
system graph, the largest degree node has degree 1458. For this node, if we look at all the
nodes j where

kikj
2m

> 1 and look at the sum of the difference between
kikj
2m

and 1 we get

∑

j∈J

(
kikj
2m
− 1

)
= 641.83 (5.25)

where J is the set of all nodes where
kikj
2m

> 1. This sum is over a third of the total node
degree for this node and thus the remaining pij(ω) have to contribute this amount to E(Di)
which explains why even increasing the number of draws may not be enough to match the
degree distribution. Also note that increasing pij(ω) to match the expected degree for some
nodes will increase the expected degree above the actual degree for other nodes.

Returning to the autonomous system network we note that the instances generated
using Algorithm 10 had an average ω of 13890.12 and a standard deviation of 41.875.
Compare this with the actual number of edges in the network which is 12572. So for this
network, on average, we have to draw over 1000 more edges to match the total number
of edges. Figures 5.20 and 5.21 plot the results from Algorithm 9 with ω = 13890.12 and
reflect the patterns found in Figures 5.18 and 5.19. Note that the largest difference between
the expected degree in the ωCL model with ω = ω = 13890.12 and the average degree from
the instances generated from Algorithm 10 with l = 10000 is 0.2437 suggesting that the
ωCL model with ω = ω = 13890.12 approximates the model underlying Algorithm 10 well.
This can also be seen from the figures, since Figure 5.18a and 5.20 are nearly identical as
are Figures 5.19 and 5.21.

Our next step is to analyze the autonomous system network and the ωCL model without
self-edges with ω chosen to match certain expected values. We begin by finding ω to
match the expected number of edges with the actual number of edges in the network
(E(M) = m). For the autonomous system network, we use the formula for E(M) given
by Equation (5.5) and set it equal to m. We then solve this equation numerically to find
ω = 13889.77 ≈ 13890. This is approximately the same ω as the average ω calculated from
the instances generated by Algorithm 10. Thus, Figures 5.20 and 5.21 can be used to show
the difference between the expected degree and the actual degree and the expected degree
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Figure 5.18: Autonomous System Network: Difference and Relative difference between
Average Degree from Algorithm 10 and Actual Degree.
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Figure 5.19: Autonomous System Network: Comparing Average Degree from Algorithm
10 and Expected Degree from Model IV.

and the expected degree from Model IV. We do note that under this model, the expected
degree of the highest degree node is approximately 879, well under the actually degree of

118



Node i

0 2000 4000 6000 8000

E
(D

i
) ω̄

−
k
i

-600

-400

-200

0

200

Difference between Expected Degree and
Degree

Figure 5.20: Autonomous System Network: Comparing Expected Degree from the ωCL
model without self-edges with ω = ω = 13890.12 and Actual Degree.
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Figure 5.21: Autonomous System Network: Comparing Expected Degree from the ωCL
model without self-edges with ω = ω = 13890.12 and Expected Degree from Model IV.

1458. Given this we could also choose ω to match the expected degree of the largest degree
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node. In this case, for the autonomous system network, we find ω = 23937.66 ≈ 23938.
This is almost double the number of edges in the original graph and the expected number
of edges under this model is 21085.51. Figures 5.22 and 5.23 plot the difference between
the expected degree and the actual degree and the difference between the expected degree
and the expected degree from Model IV, respectively. With ω = 23937.66, the expected
degree for a large number of nodes is much greater than the actual degree. This makes
it an unattractive choice for ω in practice. The remaining case for ω that we previously
examined is the case where ω is chosen to match the probabilities (in the least-squares
sense). The ω we found was the least squares solution to a system of equations. However,

when the degree constraint is violated, ln
(

1− kikj
2m

)
is not defined for some nodes i and

j since 1 − kikj
2m

< 1 for some nodes i and j. Thus we cannot calculate this ω for the
autonomous system network or any network where the degree constraint is violated.
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Figure 5.22: Autonomous System Network: Comparing Expected Degree from the ωCL
model without self-edges with ω = 23937.66 (E(Di) = ki for the largest degree node) and

Actual Degree.

Next, we use the autonomous system network to examine the two distributions model
described by Algorithm 11. Using Algorithm 11, we generate l = 10000 instances of the
network. Since we don’t know the underlying model (i.e. we don’t know the probability
of edge (i, j) being in the graph after running Algorithm 11), we can’t analyze the model
analytically. However, we can look at the average values for different properties calculated
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Figure 5.23: Autonomous System Network: Comparing Expected Degree from the ωCL
model without self-edges with ω = 23937.66 (E(Di) = ki for the largest degree node) and

Expected Degree from Model IV.

from the l = 10000 instances. Figure 5.24 plots the difference between the average degree
and the actual degree and Figure 5.25 plots the difference between the average degree and
the expected degree from Model IV. While the average degree is still much lower than the
actual degree for the larger degree nodes Algorithm 11 performs better than Algorithm 10

which can be seen by comparing Figures 5.25 and 5.19. The difference, d
(l)

i − E(Di)(m),
is larger for Algorithm 11 than Algorithm 10 and since the average node degree for both
algorithms is less than the actual degree this implies that the average node degree is closer
to the actual degree for Algorithm 11. Note that this can also be seen by comparing Figures
5.24 and 5.18a.

Next, we use Algorithm 12 on the autonomous system network to find probabilities λi
which will better match the expected degree to the actual degree using the optimization
function in (5.22). We set λ

(0)
i = ki

2m
∀ i and ε = 10−7. For the autonomous system

network, the algorithm requires 58 iterations to reach the desired tolerance; however, once
again the inequality constraints on λi are never violated. Before we normalize at the
end of the algorithm we find

∑
i λi = 1.12. For this network, ‖F (λ(0))‖ = 694.25 and

‖F (λ)‖ = 342.42. The maximum value of Fi is given by the largest degree node and
goes from 578.84 to 233.35 but the minimum value of Fi increases from 0.00327 to 0.2035.
As well, we see the same pattern with the expected number of edges as we saw with the
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Figure 5.24: Autonomous System Network: Comparing Average Degree from Algorithm
11 and Actual Degree.
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Figure 5.25: Autonomous System Network: Comparing Average Degree from Algorithm
11 and Expected Degree from Model IV.

general relativity network. The expected number of edges with λ = λ(0) is 11429.50 but

122



with λ = λ the expected number of edges is 10166.16 where the actual number of edges
in the graph is 12572. Again, it appears that by choosing λ we are better able to match
the expected degree to the actual degree for higher degree nodes but this comes at the
cost of matching the expected degree to the actual degree for lower degree nodes. Figure
5.26 plots the difference between the expected degree using λ and the actual degree while
Figure 5.27 plots the difference between the expected degree with λi = ki

2m
∀ i (Model IV)

and the actual degree. Figure 5.28 plots the difference between the expected degree using
λ and the expected degree with λi = ki

2m
which is the expected degree from Model IV.

From this figure we can see that Algorithm 12 performs better than both Algorithm 11
and 10 since for the large degree nodes |E(Di) − ki| from Algorithm 12 is smaller than

|d(l)i − ki| from both Algorithms refAlgorithm:TwoDistributions and 10. However, there is
still a large difference between the expected degree and the actual degree for some nodes.
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Figure 5.26: Autonomous System Network: Comparing Expected Degree with λ and
Actual Degree.

Finally we use Algorithm 13 on the autonomous system network and generate, l =
10000, instances to examine the improvement suggested by [85] in the case where the
degree constraint is violated. Figure 5.29 plots the difference between the average degree
from Algorithm 13 and the actual degree while Figure 5.30 plots the difference between
the average degree from Algorithm 13 and the expected degree from Model IV. We see an
improvement in the approximation error since the differences in Figure 5.30 are positive;
however, this improvement is not as large as with the improved λ as can see by comparing
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Figure 5.27: Autonomous System Network: Comparing Expected Degree from Model IV(
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Figure 5.28: Autonomous System Network: Comparing Expected Degree with λ and
Expected Degree from Model IV.

Figures 5.29 and 5.26 where the differences in Figure 5.26 are smaller than in Figure 5.29.
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Figure 5.29: Autonomous System Network: Difference between Average Degree from
Algorithm 13 (l = 10000) and Actual Degree.
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Figure 5.30: Autonomous System Network: Comparing Average Degree from Algorithm
13 (l = 10000) and Expected Degree from Model IV.
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5.7 Conclusion

We examined some simple ways of modifying O(m) Chung-Lu model without self-edges
to better match the expected degree distribution to the actual degree distribution. In
the case where the degree constraint is not violated, the O(m) Chung-Lu model, Model
IV, may not be a bad approximation to begin with but by drawing more edges we can
improve the degree distribution for some nodes with insufficient edges although this comes
at the expense of overestimating the degree distribution for other nodes. Using the two
distributions algorithm, Algorithm 11, also improves the distribution, albeit by less than
by simply adding edges for the network we examined, but it does not overestimate the
distribution of other nodes. When the degree constraint is violated drawing more edges
again improves the degree distribution but is still well under the desired value for large
degree nodes. Using Algorithm 11 in this case does a better job of matching the distribution
and still underestimates the number of edges which allows for the possibility of adding more
edges. Algorithm 12 (improving λ for Model IV) underestimates the number of edges and
performs better than Algorithm 11 in both the case where the degree constraints hold and
when they are violated while Algorithm 13 also performs well in both cases. However, in
the case where the constraint on the input degree sequence is violated the modifications
to the O(m) Chung-Lu model still leave large differences between the expected degree and
the actual degree for some nodes. This suggests along with all our previous analysis that
when the degree constraint is violated, the Chung-Lu model is not a good choice for a null
model. If we were to use the Chung-Lu model as a basis to compare other graph models to
and we suppose (incorrectly) that the expected degree is equal to the degree to derive other
model properties for the Chung-Lu model such as the clustering coefficient or assortativity
then any comparison of these properties between the Chung-Lu model and other graph
models is incorrect.
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Chapter 6

A Clustering Graph Generator

6.1 Introduction

In the previous two chapters we examined the Chung-Lu model as well as approximate
Chung-Lu models in detail. As we have noted previously, the Chung-Lu model is a very
simple model and doesn’t capture many of the important properties of real networks we
are interested in. In this chapter, we develop a graph generator to capture more of these
properties. As with any graph generator, capturing the essential properties of a real-world
network is important since we can use the synthetic networks generated from a graph
generator to not only better understand the network under investigation but synthetic
graphs can also be used to test graph analysis algorithms, such as clustering algorithms
and anomaly detection algorithms.

One network property of particular interest is the network community structure. In a
network, a community can broadly be defined as a collection of nodes that share a large
number of connections internally with many fewer connections to nodes outside the collec-
tion [80, p. 357]. The size and number of communities in a network can provide insight into
the underlying network. As well, each community itself can be examined for patterns and
properties and since the communities are smaller than the overall network this makes the
analysis easier. However, the study of network community structure can often be difficult
since a community can be quantified in many different ways [80, Chapter 11]. One way
to evaluate community structure is to look at the number of triangles in a graph and in
particular the number of triangles each node is a part of. Thus, there are a number of
graph generators that try to replicate the triangle structure of real networks including the
models developed by Seshadhri, Kolda and Pinar [94, 58] and Gutfraind, Meyers and Safro
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[43]. Another measure of community structure is the assortativity coefficient which we will
discuss in Section 6.2. Mussmann et al. [76] use the observed assortativity of a network to
develop a graph generator that matches the assortativity and thereby captures the com-
munity structure of the network. In the graph generator we develop, we use a different
approach to model the community structure: we use a clustering algorithm as part of our
graph generator. We begin by applying a clustering algorithm to the real-world network we
are trying to model. We then use the resulting clusters, as well as the subgraphs induced
by these clusters, as inputs into our graph generator. This additional information is used
to help develop a graph generator that better preserves the community structure compared
to a graph generator focused only on the triangle structure. In our graph generator, we
separate the between cluster and within cluster behavior and use techniques to generate
random graphs with prescribed degree sequences to build our synthetic networks. Using
inputs from a real-world network, we then look at the properties of a synthetic network
generated from our algorithm and compare these properties to the real network properties
as well as to the properties of another popular graph generator, BTER, developed by Se-
shadhri, Kolda and Pinar [94, 58]. In particular, we focus on comparing two measures of
community structure, the clustering coefficient and the assortativity coefficient. We find
that our graph generator does well at preserving the clustering coefficient and typically
outperforms BTER in matching the assortativity coefficient, particularly when the assor-
tativity coefficient is negative. As we will show in Section 6.5, our graph generator uses
an edge switching algorithm as one of the building blocks of the algorithm. In particular,
the edge switching algorithm is applied to each of the clusters. So it is also of interest to
compare instances generated by our graph generator to instances generated by the edge
switching algorithm applied to the entire network. For many networks, applying the edge
switching algorithm to the entire graph greatly reduces the clustering coefficient; however,
this is not seen in instances generated by our graph generator where the clustering co-
efficient remains close to the original clustering coefficient. As well, the edge switching
algorithm can change the assortativity coefficient by a large amount, but this behaviour
is once again not seen in instances generated by our graph generator. This suggests that
by applying the edge switching algorithm to only the clusters themselves we can preserve
important aspects of the community structure. Before presenting our graph generating
algorithm and our numerical results, we first discuss some of the interesting properties
common to many networks of interest, including some properties we have already exam-
ined in the context of the Chung-Lu model. Then we introduce some of the prevailing graph
generators and present the clustering algorithm, the Louvain algorithm, we will be using
to generate clusters. After presenting our algorithm and numerical results we conclude by
looking at avenues for future research.
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6.2 Network Properties

We refer to the networks we are interested in as “interaction networks” [94]. This describes
a wide variety of networks including social networks, citation networks, collaboration net-
works, computer traffic networks, and gene regulation networks. Despite their diverse
nature these interaction networks share many properties, including degree distribution,
diameter, clustering coefficient and assortativity coefficient. We consider each of these
properties in turn and describe the similarities across different interaction networks. In
the discussion that follows we only consider undirected graphs (i.e. networks where edges
do not have a direction).

In interaction networks, one of the most commonly examined properties is the degree
distribution. The degree of a node or vertex in an undirected graph is the number of edges
connected to it, thus the degree distribution simply describes the distribution of degrees
in the graph. The degree distribution of a graph follows a power law distribution if the
number of nodes Nk with degree k approximately satisfies

Nk ∝ k−γ, (6.1)

where γ > 0 is called the power law exponent. So, graphs that have a power-law degree
distribution have a lot of nodes with small degree and only a small number of nodes with
large degree. Most real-world networks have a power law degree distribution. Power laws
have been found in the Internet [35], the Web [16, 53], citation graphs [91], online social
networks [20] and many others. Thus, any graph generator that we develop should be able
to generate synthetic networks that have a power-law degree distribution.

Perhaps one of the most well known properties common to many real-world networks
is known as the “small-world” property. One way to measure this property is to use the
diameter of a graph. A graph is said to have diameter D when D is the smallest integer
such that every pair of nodes can be connected by a path of length at most D edges. The
diameter of most real-world graphs is relatively small suggesting that most nodes in the
graph are relatively close to one another hence the “small-world” description. However, the
diameter can be affected by outliers so we define the integer effective diameter to measure
the pair-wise distance between nodes. The integer effective diameter is the minimum
number of steps in which some fraction of all connected pairs of nodes can reach each
other. The effective diameter has been found to be small for large real-world graphs, like
the Internet, the Web, and online social networks [6, 63, 66].

Since we are particularly interested in the community structure of networks we examine
one of the measures most commonly used to determine community structure, the clustering
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coefficient. As mentioned previously there are many ways to quantify a community in
a network and thus there are many measures of community structure in a network. We
present the clustering coefficient since it is one of the most popular measures for determining
community structure. The clustering coefficient is defined as

C =
3× Total Number of Triangles

Total Number of Wedges
, (6.2)

where a wedge is a path of length 2 and 0 ≤ C ≤ 1. If connections between vertices are
made at random such that the probability of an edge occurring is a function of the node
degree (i.e the probability of an edge between nodes i and j is

kikj
2m

), then the clustering
coefficient takes the value

C =
1

n

[〈k2〉 − 〈k〉]2

〈k〉3
, (6.3)

where 〈km〉 = 1
n

∑n
i=1 k

m
i and ki is the degree of node i [80, p. 449]. For example, if we

assume that 〈k2〉 and 〈k〉 have fixed finite values the clustering coefficient becomes small
as n → ∞, thus we can expect the clustering coefficient to be very small in large graphs
assuming the connections between vertices are made at random. However, the typical value
for C is between 0.1 and 0.5 in many real-world networks [94] which is much larger than
suggested by Equation (6.3).

We can also define the local clustering coefficient for each node as

Ci =
Number of Pairs of Neighbors of i that are Connected

Number of Pairs of Neighbors of i
. (6.4)

The local clustering coefficient is often dependent on degree, where vertices with higher
degree have a lower local clustering coefficient on average [80, p. 265].

Another popular metric used to analyze networks is known as assortative mixing and
in particular assortative mixing by degree which is the tendency for vertices to connect to
other vertices with similar degree to their own. One way to measure assortative mixing is
through the assortativity coefficient. To define the assortativity coefficient we must first
define some preliminary variables. Let pk be the probability that a randomly chosen vertex
in the graph will have degree k. Now, suppose we consider a vertex reached by following a
randomly chosen edge in the graph. Note that the degree of this vertex is not distributed
according to pk; instead, it is biased in favor of vertices of high degree. This is because
more edges end at a high-degree vertex than at a low-degree one so the degree distribution
for the vertex at the end of a randomly chosen edge is proportional to kpk rather than pk.
We now define the remaining degree as the number of edges leaving the vertex other than
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the one we arrived along. It is one less than the total degree and distributed proportional
to (k + 1)pk+1. The normalized distribution, qk, of the remaining degree is

qk =
(k + 1)pk+1∑

j jpj
. (6.5)

Let the quantity ejk be defined as the the joint probability distribution of the remaining
degrees of two vertices at either end of a randomly chosen edge. This quantity is symmetric
on an undirected graph, ejk = ekj, and obeys the sum rules

∑

jk

ejk = 1, (6.6)

and ∑

j

ejk = qk. (6.7)

Note that if there is no assortative mixing in a network then ejk = qjqk and if there is
assortative mixing ejk will differ from this value. The amount of assortative mixing can be
quantified by the connected degree-degree correlation function given by

∑

jk

jk(ejk − qkqj). (6.8)

The value of this function is zero when there is no assortative mixing, positive for assortative
mixing and negative for disassortative mixing. If we want to compare different networks
we can normalize this value by its maximal value (i.e. the value it achieves on a perfectly
assortative network). This value is equal to the variance σ2

q =
∑

k k
2qk − [

∑
k kqk]

2. This
gives us the following assortativity coefficient

r =
1

σ2
q

∑

jk

jk(ejk − qkqj), (6.9)

Note that r can be shown to be a Pearson correlation coefficient so the values of r range
from -1 to 1. As mentioned, a network has perfect assortative mixing if r = 1, is non-
assortative if r = 0 and is completely disassortative (i.e. vertices connect to others with
very different degrees) if r = −1. In [80, p. 267] it is noted that social networks tend
to have positive r values while technological, information and biological networks tend to
have negative r values.
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As with the clustering coefficient we can look at assortative mixing at the local level.
The local assortativity [87] is defined as

ρi =
j(j + 1)(k − µq)

2mσ2
q

. (6.10)

where j is the remaining degree of node i, k is the average remaining degree of node i’s
neighbors, µq is the mean of the remaining degree distribution qk and σ2

q is its variance.

The properties highlighted above are often targeted when building graph generators.
In the next section we outline some of the current graph generators being used to replicate
real-world graphs including some we have discussed previously.

6.3 Existing Graph Generators

The most well-known graph generating model is widely attributed to Erdős and Rényi [33]
and is often referred to as the “Erdős-Rényi model” or “Erdős-Rényi random graph”. In
the Erdős-Rényi (ER) graph each pair of nodes has an identical, independent probability
of sharing an edge. The ER graph provably violates the degree distribution power law
found in real-world networks. In fact, it can be shown that the degree distribution follows
a Poisson distribution which is why this graph is also referred to as the “Poisson random
graph”. For this reason, Erdős-Rényi graphs are rarely used to model real-world networks.

In the ER graph model every edge has an equal probability of occurring and the ex-
pected degree of each node is the same. To overcome this limitation, Chung and Lu [22, 23]
introduced a graph model where the expected degree distribution is specified as noted in
the previous chapters. So, Chung-Lu graphs can produce graphs with power law degree
distributions. However, the generated graphs have small clustering coefficients relative to
real-world networks. We should also note that the ER graph model is equivalent to the
Chung-Lu graph model with degree distribution k = (pn, pn, . . . , pn) where p is the prob-
ability of nodes sharing an edge in the ER model and n is the number of nodes in the
graph.

Similar to the Chung-Lu model we have the graph model that consists of the ensemble of
all graphs with a prescribed degree sequence where each graph in the ensemble is equally
likely [12, 68, 71, 72, 78]. In the Chung-Lu model, only the expected degree of a node
is equal to the given degree and in any particular instance, the degree of a node may
actually differ from the given degree, however, in the model consisting of the ensemble of
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all graphs with a prescribed degree sequence, in every instance, the node degree matches
the given node degree. Two common algorithms for generating instances of this model
are the switching algorithm [69, 79, 90, 51] and the matching algorithm [71, 78, 69]. We
use both algorithms in our graph generator and we will discuss these algorithms in more
detail when we present our graph generator. We should note however, that neither the
matching nor the switching algorithm generate each graph from the ensemble with uniform
probability and thus only approximate the model.

Next, we look at some of the more complex graph generators used to model interaction
networks. The Stochastic Kronecker Graph Model [20] also known as R-MAT has proved
to be one of the most successful generative strategies for modeling real-world networks and
is used as the graph generator for the Graph 500 Supercomputer Benchmark [41]. R-MAT
generates a graph by recursively partitioning the adjacency matrix. There are typically
four partitions with the probabilities of an edge falling into one of these partitions given
by a, b, c, d where a + b + c + d = 1. Typically, a ≥ b, a ≥ c, a ≥ d and often b = c. To
see how an edge is placed in the R-MAT model consider the adjacency matrix in Figure
6.1. Initially, the matrix is divided into four parts. Partition b is then randomly chosen
according to the probabilities a, b, c, d and then divided into four parts. From there
partition a is randomly chosen again according to the probabilities a, b, c, d and divided
into four parts. This process continues recursively until we actually reach the finest level
of the adjacency matrix at which point we can add an edge to the graph by setting the
value in the partition to 1. In the above explanation of the R-MAT model the probabilities
a, b, c and d are the same at each level of the partition. In the actual R-MAT algorithm
an element of randomness is introduced so that these values vary slightly for each level
of the partition. The randomness is introduced to better match the properties of real-
world networks and while the R-MAT model can generate graphs with power-law degree
distributions, it does not generate graphs with high clustering coefficients [86].

The Block Two-Level Erdős-Rényi (BTER) model [94, 58] is designed to capture the
underlying community structure in real-world networks. BTER graphs contain a scale free
collection of dense ER subgraphs which the authors suggest is the underlying structure
of most real-world networks. The BTER graph takes as an input the degree distribution
and the clustering coefficient distribution (i.e. for each node degree the average clustering
coefficient) and is able to match both the degree distribution and the local and global
clustering coefficients of real-world networks fairly well. However, in BTER graphs nodes
of degree d have neighbors with degree ≈ d. Yet, there is more variation in the joint
degree distribution of real-world graphs. Communities in real-world networks are not as
homogeneous as depicted by the BTER graph.

There are many more graph generators than mentioned above. Chakrabarti and Falout-
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Figure 6.1: The R-MAT Model

sos [19] provide a survey of some other models. They include preferential attachment [5],
small-world models [102], copying models [60] and forest fire [61]. Both BTER and R-
MAT are generative models. There is another class of network generators, known as graph
editing models. In these models, we start with a given network and randomly change
its components until the network becomes sufficiently different from the original network.
Thus, we are able to introduce variability while preserving key structural properties. The
simplest example of this type of generator is the switching algorithm mentioned previously.
One notable graph editing method is known as MUSKETEER [43]. The method uses a
multilevel approach to build graphs that preserve some of the original network structural
properties while introducing realistic variability and is able to retain many of the real-world
network properties.

6.4 The Louvain Clustering Algorithm

To build a graph generator via clustering we must first choose an algorithm to cluster
our real-world networks. While our graph generating algorithm is designed to use clusters
from any clustering algorithm we choose to use the Louvain algorithm [13] as our initial
clustering method. The Louvain algorithm finds hierarchical community structure using
a heuristic modularity optimization technique. Since communities within any network
can loosely be defined as densely connected nodes that share few connections with nodes
outside the community any community detection or clustering algorithm will attempt to
partition a network into clusters or communities of densely connected nodes where the
number of connections between clusters is small. One measure of partitioning success is
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defined by modularity, Q ∈ [0, 1]:

Q =
1

2m

∑

i,j

[
Aij −

kikj
2m

]
δ(ci, cj), (6.11)

where Aij represents the edge weight between node i and j, ki =
∑

j Aij is the sum of edge
weights adjacent to vertex i, ci is the community node i belongs to, the δ-function δ(ci, cj)
is 1 if nodes i and j belong to the same community and 0 otherwise and m = 1

2

∑
ij Aij

is the sum of all the edge weights. Not only is modularity used to compare the quality of
partitions obtained by different clustering algorithms, where a higher modularity indicates
a better clustering algorithm, but it can also be used as an objective function to optimize
in designing a community detection algorithm. However, exact modularity optimization
is a computationally hard problem [15]; thus, many algorithms, including the Louvain
algorithm, use a heuristic approach to modularity optimization.

The Louvain algorithm can be divided into two steps that are repeated iteratively to
build hierarchical clusters. In the first step of the algorithm, each node in the graph is
assigned to its own community. Each node is then considered sequentially and for each
node i we calculate the change in modularity from moving node i to each of its neighboring
communities. A neighboring community is any community that contains a neighbor of node
i. Thus if node i has m neighbors we must calculate at most m changes in modularity. Once
all of the modularity calculations have been completed we determine whether or not to
move node i to a new community based on the largest of these changes. If the largest change
in modularity is positive we move node i to the community with the largest modularity
change; otherwise, node i remains in its original cluster. Once all of the nodes have been
considered we repeat this process until no nodes can be moved into new communities and
thus no gains in modularity can be made. It should be noted that the order in which nodes
are considered does change the algorithm’s output; however, in practice, it does not seem
to significantly affect the modularity obtained [13].

After the first step of the algorithm has been completed we move to the second step
which consists of building a new network. Each node in the new network now represents
a cluster found during the first step of the algorithm. The edges within a cluster are
represented by self-loops where the edge weight is determined by the sum of the within-
cluster edge weights. The edges between nodes in the new graph are determined by the
edges between clusters and the edge weights are determined by the corresponding between-
cluster edge weight sums. Once we have constructed the new graph we can repeat these
two steps and the process can be repeated until no new clusters can be formed. At this
point the algorithm stops. Figure 6.2 shows the results of applying the Louvain algorithm
on a very simple graph.
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Figure 6.2: Simple Example of Louvain Clustering

6.5 The Clustering Graph Generator

As mentioned previously, our graph generator is built using the clusters generated from a
clustering algorithm where we use the Louvain algorithm described in the previous section
to generate clusters. We generate edges between clusters differently than edges within
clusters, where we use more information to build the graph within a cluster than between
clusters. Between clusters we use a modified version of the matching algorithm [71, 78, 69]
also known as the configuration model. In the original matching algorithm each node is
assigned a set of “stubs”, which are sawn-off ends of the edges, according to the desired
degree sequence. Then, pairs of stubs are chosen at random to create the edges of the
network. If a self-edge or multiple edge is chosen then the entire network is discarded
and the entire process starts over. Alternatively, the method can be modified so that if
a multiple edge or self-edge is drawn then the network is not discarded, we simply draw
another pair of stubs. The network is only discarded if no further progress is possible (i.e.
all the remaining stubs would either create self-edges or multiple-edges). To better illustrate
how we use a modified matching algorithm to create edges between clusters we consider
the graph in Figure 6.2. Figure 6.2 depicts the original graph, and the hierarchical clusters
generated by the Louvain algorithm where in the original graph the numbers represent node
labels and in the level 1 and coarsest level graphs the numbers represent edge weights. For
our purposes we are only interested in the original graph and the level 1 graph. The first
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step in our between-clusters algorithm is to calculate the external degree for each node.
The external degree for node i is the number of edges between node i and any node j where
node j does not belong to the same cluster as node i. For example, node 12 has external
degree 4. Once the external degree for each node has been calculated we use it to create a
list of stubs for each cluster where each node appears in the list with multiplicity equal to
its external degree. If we let the green nodes represent cluster 1, the dark blue nodes cluster
2, the red nodes cluster 3 and the light blue nodes cluster 4, then we have the following stub
lists: C1 = {1, 2, 3, 5, 6, 6}, C2 = {4, 7, 7, 8, 8}, C3 = {9, 11, 11, 11}, C4 = {12, 12, 12, 12, 14}.
We can use these lists to create the edges but before we add an edge we must first decide
what clusters any given edge will be between. To do this we use the level 1 graph given
in Figure 6.2. The weights on the edges in this graph indicate how many edges there are
between the clusters and we use these weights to calculate the probabilities of placing an
edge between cluster I and J . The probability that an edge will be between cluster I and
J is given as follows

P (I, J) =
Number of edges between clusters I and J

Total number of external edges
. (6.12)

In our example graph, P (1, 2) = 4
10

. Once we have chosen which clusters to place an
edge between then we can randomly choose a value from CI and CJ . If no edge exists
yet between this pair of nodes then we add this edge to our generated graph and remove
these values from CI and CJ . For example, if on our first draw we chose to place an edge
between clusters 1 and 2 and then chose 6 from C1 and 7 from C2 we would add edge (6,7)
to our generated graph and C1 and C2 will now be C1 = {1, 2, 3, 5, 6}, and C2 = {4, 7, 8, 8}.
We continue to add edges in this way. Ideally we would only have to repeat this process e
times where e is equal to the number of external edges but because we can get duplicate
edges we complete α ∗ e draws where α ≥ 1. As well, we note that there is always the
possibility that when we complete this procedure some unassigned values remain in the CI
lists although the number should be small. Note, we do not restart the algorithm in this
case. Algorithm 14 summarizes the algorithm for adding edges between clusters described
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above.

Algorithm 14: Between Clusters Algorithm

for I = 1 to nClusters do
Create a list of stubs, CI , based on the external degree of each node in the
cluster;
for J = I + 1 to nClusters do

Calculate P (I, J) =
Number of edges between clusters I and J

Total number of external edges
;

end

end
for i = 1 to α · nExternalEdges do

Choose the two clusters I and J where I < J to put an edge between with
probability P (I, J);
Randomly choose stub p from CI ;
Randomly choose stub k form CJ ;
if Edge (p, k) isn’t in the graph then

Add edge (p, k) to the graph;
Remove p from CI ;
Remove k from CJ ;

end

end

The algorithm for adding edges within a cluster is based on the switching algorithm
[69, 79, 90, 51]. For each cluster, we create a graph from the cluster nodes and the original
internal cluster edges and apply the switching algorithm to this graph. The switching
algorithm uses a Markov chain to generate a random graph with a given degree sequence
[79]. To describe the switching algorithm suppose we have a graph G. We start with the
original graph, G, and proceed to carry out a series of Monte Carlo switching steps. In
each step a pair of edges (i, j), and (k, l) is selected at random and the ends of the edges
are switched to give the edges (i, l), and (k, j). If this switch does not lead to self-edges
or multiple edges then the switch is performed; otherwise it is not performed. The entire
process is performed α · e times where e is the number of edges in G and α is chosen large
enough so that the Markov chain shows good mixing (i.e. is “close” to its steady state
distribution). For our purposes, a Markov chain shows good mixing if the properties of
interest are not changing. This switching algorithm is performed on each of the clusters to
generate all the edges within clusters. Algorithm 15 describes the above algorithm. Our
graph generator combines Algorithms 14 and 15 to generate synthetic networks. Note that
we could have considered using a matching algorithm or alternatively the Chung-Lu model
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within the clusters to generate edges instead of the switching algorithm. In both these
cases we would then only need the internal cluster degree for each node as opposed to the
entire subgraph induced by the cluster as is needed for the switching algorithm. However,
for the real-world networks we considered, many of the clusters had a small number of
nodes with large internal degree (i.e. hubs) and many nodes with small internal degree.
The constraint k2i ≤ 2m ∀ i where ki is the internal cluster degree of node i and m is
the sum of the internal degrees within the cluster was often violated. For the Chung-Lu
model, we know that if this constraint is violated, then the underlying model is not in
fact the original Chung-Lu model but an approximate (extended) Chung-Lu model where
the expected degree can be quite far from the actual degree, thus making the Chung-
Lu model an unattractive choice for modeling the clusters. In the case of the matching
algorithm, if the constraint is violated then it can be difficult for the algorithm to run
to completion without having to restart many times. This is what makes the switching
algorithm attractive despite the need for more information than in either the matching
algorithm or the Chung-Lu model.

Algorithm 15: Within Clusters Algorithm

for I = 1 to nClusters do
Create a graph, GI , from the nodes and internal edges of cluster I;
for i = 1 to α · nInternalEdges do

Choose two edges (i, j), and (k, l) randomly from GI ;
if i 6= l and k 6= j and edge (i, l) and (k, j) are not in GI then

Remove edges (i, j), and (k, l) from GI ;
Add edges (i, l), and (k, j) to GI ;

end

end

end

6.6 Experimental Studies

We test our graph generator on various networks including including two collaboration
networks (ca-GrQc, ca-AstroPh), one citation network (cit-HepPh), a technological net-
work (as-735) and a social network (soc-Epinions)[62]. All five networks are treated as
undirected graphs. Table 6.1 lists the basic attributes of the graphs including the number
of clusters generated by the first level of the Louvain algorithm.

We evaluate our graph generator using an instance generated from our clustering graph
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Graph Name Nodes Edges Number of Clusters

ca-GrQc 4158 13422 868

ca-AstroPh 18772 198080 2061

cit-HepPh 34546 210789 895

as-735 6474 12572 964

soc-Epinions 75879 811480 8481

Table 6.1: Basic Attributes of the Networks

generator (CGG) algorithm. Note that for all the graphs, in all clusters, α = 100 in the
switching algorithm, Algorithm 15, to ensure good mixing. We found through numerical
experiments that both the assortativity coefficient and the global clustering coefficient
within the clusters had reached an equilibrium with α = 100. We begin by comparing the
properties of the instance generated by the CGG to the original network and to an instance
generated by the BTER graph generator using the code from the feastpack package [57]
where both the degree distribution and the clustering coefficient distribution of the original
network are used as inputs. The two properties we are most interested in comparing are
the clustering coefficient and the assortativity coefficient. Tables 6.2 and 6.3 list the global
clustering coefficient and the assortativity coefficient for each of the models, respectively.
Figures 6.3, 6.4, 6.5, 6.6 and 6.7 plot the degree distribution, the local clustering coefficient
distribution and the local assortativity distribution of the synthetic networks for each of
the networks under study. From Table 6.2 we can see that the CGG tends to underestimate
the global clustering coefficient while BTER overestimates if for some graphs, sometimes
by a factor of 2 or more. The CGG does a much better job of matching the assortativity
coefficient which can be seen from Table 6.3. This can also be seen in Figures 6.3c, 6.4c,
6.5c and 6.6c. In the case of the citation network, cit-HepPh, and the social network,
soc-Epinions, CGG is able to match the sign of the assortativity coefficient whereas BTER
is not.

As we saw in Section 6.5, the edge switching algorithm, Algorithm 15, is used on each
of the clusters. The edge switching algorithm when applied to the entire network is a
means of generating a random graph with prescribed degree sequence. We are interested

140



Graph Name Original CGG BTER

ca-GrQc 0.629 0.514 0.531

ca-AstroPh 0.318 0.108 0.326

cit-HepPh 0.146 0.016 0.154

as-735 0.01 0.016 0.06

soc-Epinions 0.066 0.016 0.107

Table 6.2: Global Clustering Coefficient of Each Model.

Graph Name Original CGG BTER

ca-GrQc 0.63919 0.57355 0.64715

ca-AstroPh 0.20513 0.12293 0.46496

cit-HepPh -0.00629 -0.03341 0.28205

as-735 -0.18176 -0.16105 -0.08315

soc-Epinions -0.04065 -0.09630 0.11137

Table 6.3: Assortativity Coefficient of Each Model.

in comparing an instance generated by the CGG to a random graph generated using the
edge switching algorithm to examine how restricting the edge switching algorithm to the
clusters affects the properties of a generated instance. The matching algorithm when ap-
plied to the entire network could also be used as another means of generating a random
graph with prescribed degree sequence. Similarly, the Chung-Lu model and the associated
O(n2) algorithm can generate a random graph with an expected degree sequence equal to
the prescribed degree sequence. So alternatively, we could use these algorithms to gener-
ate an instance to compare with an instance from the CGG. In Section 6.5 we examined
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Figure 6.3: Comparison of Properties of Various Models for the ca-GrQc Network.

why these two algorithms may not perform as well as the switching algorithm when the
constraint k2i ≤ 2m ∀ i does not hold. As well, if we wish to draw uniformly from the set
of all networks with a prescribed degree sequence then as noted in [69] the switching algo-
rithm performs better than the matching algorithm. Given these reasons we use the edge
switching algorithm to generate instances with a prescribed degree sequence to compare
with instances from the CGG. Since the switching algorithm is a Markov chain method, we
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Figure 6.4: Comparison of Properties of Various Models for the ca-AstroPh Network.

need to ensure that we perform enough switches to get good mixing. For all the graphs, we
found empirically that α = 100 worked well. In other words, if we attempt 100·(Number of
edges) switches then the properties of interest (i.e. clustering coefficient and assortativity
coefficient) have converged to steady-state values for the graphs we considered. For each
graph, Table 6.4 lists the global clustering coefficient and the global assortativity coefficient
for the instance generated by the edge switching algorithm as well as the values for the
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Figure 6.5: Comparison of Properties of Various Models for the cit-HepPh Network.

CGG instance and the real-world network. For all the the graphs, the global clustering
coefficient in the edge-switching instance is near zero. However, in the CGG instance the
global clustering coefficient is generally lower than in the real network but is still relatively
close. As well, in the edge-switching instance all the assortativity coefficients are negative
and in general further from the value in the real network than in the CGG instance. This
suggests that applying the edge switching algorithm to the clusters as opposed to the entire
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Figure 6.6: Comparison of Properties of Various Models for the as-735 Network.

graph preserves important aspects of the community structure of the real network.
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Figure 6.7: Comparison of Properties of Various Models for the soc-Epinions Network.

6.7 Conclusion

In this chapter, we presented an algorithm for generating a network based on clusters
generated using a clustering algorithm on the original network. We used numerical exper-
iments to compare our graph generator to the original network and another popular graph
generator, BTER, designed to match the clustering coefficient distribution. We looked at
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Graph Name
Global Clustering Coefficient Assortativity Coefficient

Original CGG Edge-Switching Original CGG Edge-Switching

ca-GrQc 0.629 0.514 0.000 0.63919 0.57355 -0.01619

ca-AstroPh 0.318 0.108 0.000 0.20513 0.12293 -0.01918

cit-HepPh 0.146 0.016 0.000 -0.00629 -0.03341 -0.01417

as-735 0.01 0.016 0.001 -0.18176 -0.16105 -0.18817

soc-Epinions 0.066 0.016 0.001 -0.04065 -0.09630 -0.19121

Table 6.4: Comparing the Edge Switching Algorithm with the Clustering Graph Generator

two different measures of community structure, the clustering coefficient and assortative
mixing, both at the global and local level. We found the our graph generator performed
well. While the global clustering coefficient was generally lower for our graph generator
than in the original graph, our graph generator was much better able to match the assor-
tativity coefficient and unlike BTER was always able to match the sign of the assortativity
coefficient. As well, when we compared our graph generator to the edge switching algo-
rithm applied to the entire network we were able to show that by building a synthetic
graph based on clusters helps preserve the community structure in the network.

One possible area for future research, is to extend the graph generator to bipartite
graphs. In a bipartite graph, nodes can either be classified as belonging to class 1 (black)
or class 2 (red) where edges only exist between a node of class 1 and a node of class 2.
The clustering graph generator should work they same in the bipartite case where we note
that each cluster on the first level can include both black and red nodes. However, we will
have to ensure that black-black and red-red connections do not occur. In the first step of
the algorithm when we use the matching model to create edges between the clusters this
just involves adding a check to make sure that when we choose two nodes they do not
belong to the same class. If a trial edge does contain two nodes of the same class then we
simply do not accept the trial edge as an actual edge. In the second part of the algorithm
where we switch edges within a cluster, again we can check to ensure we are not forming
an edge that has nodes from the same class, when we perform a switch. Alternatively, we
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can list all the edges with nodes of class one (red) first and nodes of class 2 (black) second.
Then when we perform any switch we cannot form edges with two nodes of the same class.
This would generate bipartite networks with the same community structure as the original
network.
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Chapter 7

Conclusion

In this thesis we explored two different topics within the field of data science. In the first
part, in Chapters 2 and 3, we use a nonlinearly preconditioned nonlinear conjugate gradi-
ent (PNCG) algorithm to find the solution to two different problems: finding the rank-R
canonical tensor decomposition and finding the solution to a latent factor model. The
PNCG algorithm presented in Chapter 2 is very general and allows for any nonlinear pre-
conditioner, however, for both of the problems we considered we used the ALS algorithm
as a nonlinear preconditioner. For both problems the PNCG algorithm was successful
in increasing the convergence speed relative to ALS (and NCG for the rank-R canonical
tensor decomposition). Given the success of the PNCG algorithm it would be interesting
to investigate the effectiveness of PNCG for other nonlinear optimization problems not-
ing that although the PNCG algorithm allows for any nonlinear preconditioner, effective
preconditioners for more general nonlinear optimization problems will be highly problem-
dependent. As a fist step, we could use the simple latent factor model from Chapter 3
to investigate the convergence speed of the PNCG algorithm using the stochastic gradient
descent method as a nonlinear preconditioner. As well, we could consider some of the
extensions to the basic factor model that are outlined by Koren, Bell and Volinsky [59]
and apply the PNCG algorithm to find a solution to these models, both with ALS as a
preconditioner and other possible nonlinear preconditioners.

In the second part of this thesis we explored network models and began in Chapter 4
by examining in detail the Chung-Lu model [4, 22, 23]. The Chung-Lu model is a very
simple model that is designed to match the expected degree sequence in the model to
the input degree sequence. We showed how changes to the model (i.e. excluding self-
edges) and violations of the degree constraint (k2i ≤ 2m ∀ i) imply that this property,
E(Di) = ki ∀ i, is no longer true. We also examined in-depth an approximate Chung-Lu
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model, the MCL model, which arose from an algorithm designed to increase the speed of
the O(n2) algorithm traditionally used to create instances of the Chung-Lu model. For the
approximate model, we showed how large the difference between the expected degree and
the actual degree can be for some nodes, especially when the degree constraint is violated.
In Chapter 5, we then examined some simple ways of modifying the MCL model without
self-edges to better match the expected degree sequence to the actual degree sequence.
However, we found that in the case where the constraint on the input degree sequence
is violated the modifications to the MCL model still leave large differences between the
expected degree and the actual degree for some nodes. This suggested that when the degree
constraint is violated, the Chung-Lu model is not a good choice for a null model (i.e. we
should not compare other graph generators to the Chung-Lu model for networks where the
degree constraint is violated). Finally, we introduced an algorithm for generating a network
designed to preserve the community structure of the original network being modeled. Our
algorithm was based on using clusters generated using a clustering algorithm on the original
network. Using numerical experiments we compared our graph generator to the original
network and another popular graph generator, BTER, designed to match the clustering
coefficient distribution. Using the clustering coefficient and the assortativity coefficient
to measure the community structure we found the our graph generator performed well
in preserving these properties. While the global clustering coefficient was generally lower
for our graph generator than in the original graph, our graph generator was much better
able to match the assortativity coefficient and unlike BTER was always able to match
the sign of the assortativity coefficient. As well, when we compared our graph generator
to the edge switching algorithm applied to the entire network we were able to show that
building a synthetic graph based on clusters helps preserve the community structure in the
network. As mentioned in Chapter 6 one possible area for future research is to extend our
graph generator to bipartite graphs. As well, it would be interesting to examine ways to
increase the clustering coefficient within the clusters to better match the global clustering
coefficient.
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Appendix A

O(m) Chung-Lu Model Proofs

A.1 Prove 0 <
kikj
2m2 < 1 ∀ i, j where ki, kj > 0.

Proof. For any i, j,

kikj <
1

2
k2i + kikj +

1

2
k2j

=
1

2
(ki + kj)

2

≤ 1

2

[
(ki + kj)

2 + 2(ki + kj)(2m− ki − kj) + (2m− ki − kj)2
]

=
1

2
(ki + kj + 2m− ki − kj)2

=
1

2
(2m)2

⇒ kikj
(2m)2

<
1

2

where 2m− ki − kj ≥ 0 since 2m =
∑

n ki. This also implies that
kikj
2m2 < 1.

Since ki, kj > 0 this implies
kikj
2m2 > 0.

Corollary. 0 <
k2i
4m2 < 1 ∀ i
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